# seaborn **Repository Path**: agedcoder/seaborn ## Basic Information - **Project Name**: seaborn - **Description**: Seaborn 可实现对统计数据的可视化展示,基于 Python 语言开发,使用 matplotlib 库 - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: https://www.oschina.net/p/seaborn - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 4 - **Created**: 2021-03-16 - **Last Updated**: 2021-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
-------------------------------------- seaborn: statistical data visualization ======================================= [![PyPI Version](https://img.shields.io/pypi/v/seaborn.svg)](https://pypi.org/project/seaborn/) [![License](https://img.shields.io/pypi/l/seaborn.svg)](https://github.com/mwaskom/seaborn/blob/master/LICENSE) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.592845.svg)](https://doi.org/10.5281/zenodo.592845) ![Tests](https://github.com/mwaskom/seaborn/workflows/CI/badge.svg) [![Code Coverage](https://codecov.io/gh/mwaskom/seaborn/branch/master/graph/badge.svg)](https://codecov.io/gh/mwaskom/seaborn) Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. Documentation ------------- Online documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org). The docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example gallery](https://seaborn.pydata.org/examples/index.html), [API reference](https://seaborn.pydata.org/api.html), and other useful information. To build the documentation locally, please refer to [`doc/README.md`](doc/README.md). Dependencies ------------ Seaborn supports Python 3.7+ and no longer supports Python 2. Installation requires [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), and [matplotlib](https://matplotlib.org/). Some functions will optionally use [scipy](https://www.scipy.org/) and/or [statsmodels](https://www.statsmodels.org/) if they are available. Installation ------------ The latest stable release (and required dependencies) can be installed from PyPI: pip install seaborn It is also possible to include the optional dependencies: pip install seaborn[all] You may instead want to use the development version from Github: pip install git+https://github.com/mwaskom/seaborn.git Seaborn is also available from Anaconda and can be installed with conda: conda install seaborn Note that the main anaconda repository typically lags PyPI in adding new releases. Testing ------- Testing seaborn requires installing additional packages listed in `ci/utils.txt`. To test the code, run `make test` in the source directory. This will exercise both the unit tests and docstring examples (using [pytest](https://docs.pytest.org/)) and generate a coverage report. The doctests require a network connection (unless all example datasets are cached), but the unit tests can be run offline with `make unittests`. Code style is enforced with `flake8` using the settings in the [`setup.cfg`](./setup.cfg) file. Run `make lint` to check. Development ----------- Seaborn development takes place on Github: https://github.com/mwaskom/seaborn Please submit bugs that you encounter to the [issue tracker](https://github.com/mwaskom/seaborn/issues) with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a [seaborn tag](https://stackoverflow.com/questions/tagged/seaborn).