# CTR **Repository Path**: compasslebin_admin/CTR ## Basic Information - **Project Name**: CTR - **Description**: CTR模型代码和学习笔记总结 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-22 - **Last Updated**: 2023-11-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CTR学习笔记 - Run: python main.py --model DeepFM --step train --dataset census --clear_model 1 - Requirement: tensorflow 1.15 1. 已完成模型列表[支持数据集] - FM [census] - FFM [census] - Embedding+MLP [census] - wide & Deep [census] - FNN [census] - PNN [census] - DeepFM [census & frappe] - AFM [census & frappe] - NFM [census & frappe] - Deep Crossing [census] - Deep & Cross [census & frappe] - xDeepFM [census & frappe] - FiBiNET [census & frappe] - DIN [amazon] 2. 数据集 当前支持census, frappe数据集,详情见data目录,training parameter和preprocess与数据集绑定 3. 参考论文列表 - [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook - [FM] S. Rendle, Factorization machines - [FM Model] Fast Context-aware Recommendations with Factorization Machines - [FFM] Yuchin Juan,Yong Zhuang,Wei-Sheng Chin,Field-aware Factorization Machines for CTR Prediction - [NCF] Neural Collaborative Filtering - [Wide&Deep] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems - [FNN] Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data - - A case study on user response - [PNN] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction - [DeepFM] Huifeng Guo et all. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction - [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks - [NFM] Neural Factorization Machines for Sparse Predictive Analytics - [DCN] Deep & Cross Network for Ad Click Predictions - [Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features - [xDeepFM] xDeepFM- Combining Explicit and Implicit Feature Interactions for Recommender Systems - [FiBiNET]- Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction - [AutoInt]- Automatic Feature Interaction Learning via Self-Attentive Neural Networks - [DIN] Deep Interest Network for Click-Through Rate Prediction. - [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction 4. 总结博客 - CTR学习笔记&代码实现1-深度学习的前奏 LR->FFM https://www.cnblogs.com/gogoSandy/p/12501846.html - CTR学习笔记&代码实现2-深度ctr模型 MLP->Wide&Deep https://www.cnblogs.com/gogoSandy/p/12658051.html - CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM https://www.cnblogs.com/gogoSandy/p/12742417.html - CTR学习笔记&代码实现4-深度ctr模型 NFM/AFM https://www.cnblogs.com/gogoSandy/p/12814804.html - CTR学习笔记&代码实现5-深度ctr模型 DeepCrossing -> DCN https://www.cnblogs.com/gogoSandy/p/12892973.html - CTR学习笔记&代码实现6-深度ctr模型 后浪 xDeepFM/FiBiNET https://www.cnblogs.com/gogoSandy/p/13023265.html