# mcp-tool-kit **Repository Path**: dragonlhp/mcp-tool-kit ## Basic Information - **Project Name**: mcp-tool-kit - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: dev - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-14 - **Last Updated**: 2025-03-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MCP Tool Kit: Empowering Claude with Agentic Intelligence A modular server implementation for Claude AI assistants with a variety of integrated tools, enabling Claude to perform actions and access external resources through an elegantly designed agentic framework. [![PyPI version](https://img.shields.io/pypi/v/mcptoolkit.svg)](https://pypi.org/project/mcptoolkit/) [![Python versions](https://img.shields.io/pypi/pyversions/mcptoolkit.svg)](https://pypi.org/project/mcptoolkit/) [![License](https://img.shields.io/github/license/getfounded/mcp-tool-kit.svg)](https://github.com/getfounded/mcp-tool-kit/blob/main/LICENSE) ## Quick Install ```bash pip install mcptoolkit ``` ## Overview The MCP Unified Server provides a unified interface for Claude to interact with various external systems and tools including: - **File system operations**: Read, write, and manipulate files - **Time tools**: Get current time in different timezones, convert between timezones - **Sequential thinking**: A tool for dynamic and reflective problem-solving - **Brave Search**: Web and local search capabilities - **Browser automation**: Complete browser control via Browserbase and Playwright - **Browser automation**: Complete browser control via Browserbase and Playwright - **World Bank API**: Access to economic and development data - **News API**: Access to global news sources and articles - **PowerPoint**: Create and manipulate PowerPoint presentations - **Excel**: Create and manipulate Excel spreadsheets - **QuickBooks**: Financial and accounting operations - **Shopify**: E-commerce platform integration - **Yahoo Finance**: Stock market and financial data - **FRED**: Federal Reserve Economic Data - **Agentic capabilities**: Create and deploy autonomous agents that perform complex tasks - **And many more specialized tools** ## 87 Total Tools Available ![Claude screenshot with tools](./static/87_tools.png) ## Quickstart Guide: Deploy Your First MCP Server with Default Tools Get started in minutes with just the essential capabilities: ```bash # Simple installation pip install mcptoolkit # Launch the server with default configuration mcptoolkit-server ``` Configure Claude Desktop: 1. Open Claude Desktop app 2. Go to File > Settings > Developer > Edit config 3. Add the following basic configuration: ```json { "mcpServers": { "unified": { "command": "docker", "args": [ "exec", "-i", "mcp-tool-kit-server", "python", "-u", "mcp_unified_server.py" ], "useStdio": true } } } ``` 4. Save and restart Claude Desktop You now have immediate access to powerful capabilities including file operations, web search, time tools, and more—without requiring any API keys or complex setup. ## Unleashing Agentic Intelligence: Creating AI Agents with MCP Tool Kit MCP Tool Kit introduces a powerful yet accessible framework for creating autonomous AI agents—specialized cognitive modules that can perform complex tasks without requiring direct user guidance. ### The Agent Architecture: Simplicity Meets Sophistication Agents in MCP Tool Kit function as self-contained Python modules that Claude can invoke to perform specialized tasks. The architecture embraces a file-based approach with automatic detection and loading, eliminating complex API requirements or deployment procedures. ```python # Example: A simple weather agent from agent_registry import MCPAgent, register_agent @register_agent class WeatherAgent(MCPAgent): agent_name = "weather_checker" agent_description = "Checks weather conditions for a location" agent_version = "1.0" def run(self, params): if "location" not in params: return {"error": "No location provided"} location = params["location"] try: # Use toolkit methods to gather information search_query = f"current weather {location}" search_results = self.toolkit.web_search(search_query) return { "success": True, "location": location, "weather_info": search_results } except Exception as e: return {"error": f"Error checking weather: {str(e)}"} ``` ### Simplified Deployment: Instant Agent Availability The agent deployment process has been reimagined for maximum simplicity: 1. **File-Based Deployment**: Simply drop agent files into the designated directory 2. **Automatic Detection**: The system immediately discovers and loads new or modified agents 3. **No Server Restarts**: Agents become available instantly without interrupting operations 4. **Multiple Creation Pathways**: Create agents through templates, command-line utilities, or direct file creation ```bash # Create the agents directory if it doesn't exist mkdir -p agents # Create a quick lookup agent by dropping a file cat > agents/quick_lookup.py << 'EOF' from agent_registry import MCPAgent, register_agent @register_agent class QuickLookupAgent(MCPAgent): agent_name = "quick_lookup" agent_description = "Quickly lookup information" def run(self, params): query = params.get("query", "unknown") result = self.toolkit.web_search(query, count=3) return {"result": result} EOF # The agent is IMMEDIATELY available to Claude! ``` ### Command-Line Agent Creation For those who prefer guided creation, MCP Tool Kit provides intuitive command-line utilities: ```bash # Create with interactive editor ./create_agent.py "Currency Converter" "Converts between currencies" # Use a template ./create_agent.py "Quick Calculator" "Performs calculations" --template calculator # Specify code directly ./create_agent.py "News Finder" "Finds latest news" --code " query = params.get('topic', 'general') news = self.toolkit.news_search(query, page_size=3) return {'news': news} " ``` ### Template-Based Deployment For faster development, deploy pre-made templates with custom configurations: ```bash # View available templates ls agent_templates # Deploy and customize a template ./deploy_template_agent.py weather --name "City Weather" --description "Get weather for any city" ``` ### Interacting with Agents through Claude Once deployed, agents seamlessly integrate with Claude's capabilities: ``` User: Can you check the weather in San Francisco? Claude: I'll use the weather_checker agent to find that information for you. [Claude invokes the weather_checker agent with {"location": "San Francisco"}] Based on the current weather information for San Francisco: - Temperature: 62°F / 17°C - Conditions: Partly cloudy - Humidity: 74% - Wind: 12 mph western breeze Would you like me to check any other locations for you? ``` ## Building Custom Tools for Claude with MCP Toolkit This guide demonstrates how to create custom tools that Claude can use via the Model Context Protocol (MCP) toolkit. ## Table of Contents - [Overview](#overview) - [Prerequisites](#prerequisites) - [Step-by-Step Implementation Guide](#step-by-step-implementation-guide) - [Example: Creating a Custom SEO Analysis Tool](#example-creating-a-custom-seo-analysis-tool) - [Usage with Claude](#usage-with-claude) - [Troubleshooting](#troubleshooting) ## Overview The MCP (Model Context Protocol) toolkit allows you to create custom tools that Claude can access and use. This enables Claude to perform specialized actions beyond its built-in capabilities, such as interacting with your specific business systems, analyzing data with custom algorithms, or controlling specialized hardware. ## Prerequisites - MCP toolkit installed (`pip install mcptoolkit` or Docker setup) - Access to Claude Desktop app - Basic Python knowledge - Docker (recommended) ### Get Started ASAP | Running the Server Caution: This will grant claude access to every tool without limitation in the main branch of this repository. ```bash # Method 1: Using Docker (recommended) docker run -p 8000:8000 -v ~/documents:/app/documents getfounded/mcp-tool-kit:latest # Method 2: Using docker-compose docker-compose up # Method 3: Using command-line entry point (if installed via pip) mcptoolkit-server # Method 4: Launch both server and configuration UI mcptoolkit-launcher ``` ```python # Method 5: Using Python module from mcptoolkit import mcp_unified_server # Create and run the server with default settings server = mcp_unified_server.create_server() server.start() ``` ## Step-by-Step Implementation Guide ### Step 1: Set Up Your MCP Server with the Toolkit Start by running the MCP server: ```bash # Using Docker (recommended) docker run -p 8000:8000 -v ~/documents:/app/documents -v ~/downloads:/app/downloads getfounded/mcp-tool-kit:latest # Or if installed via pip mcptoolkit-server ``` ### Configure Claude Desktop to Access Your Server 1. Open Claude Desktop app 2. Go to File > Settings > Developer > Edit config 3. Add the 'claude_desktop_configuration.json' file 4. Save the configuration 5. Restart the MCP server with your new tool integrated 6. Restart and Open Claude Desktop app ## Example: Claude Desktop Configuration The repository includes a sample Claude desktop configuration file (`claude_desktop_config.json`) that you can use: ```json { "mcpServers": { "unified": { "command": "docker", "args": [ "exec", "-i", "mcp-tool-kit-server", "python", "-u", "mcp_unified_server.py" ], "useStdio": true } } } ``` You can import this configuration in the Claude desktop app or use it as a reference to create your own. --- ## Other Usage Examples ### Example 2: Practical Tool Examples ```python from mcp.client import MCPClient # Connect to the MCP server client = MCPClient("http://localhost:8000") # --- File System Operations --- # Read file content readme = client.call_tool("read_file", {"path": "README.md"}) # Write to a file client.call_tool("write_file", { "path": "analysis_results.txt", "content": "# Analysis Results\n\nThis file contains the output of our data analysis." }) # --- Web Search and Information Retrieval --- # Search the web search_results = client.call_tool("brave_web_search", {"query": "latest AI research papers"}) # Get news headlines news = client.call_tool("news_top_headlines", {"category": "technology", "page_size": 5}) # --- Data Analysis and Visualization --- # Analyze stock market data stock_data = client.call_tool("yfinance", {"symbol": "MSFT", "period": "1mo"}) # --- Document Generation --- # Create a PowerPoint presentation client.call_tool("ppt_create_presentation", {"session_id": "quarterly_report"}) client.call_tool("ppt_add_slide", {"session_id": "quarterly_report", "title": "Q3 Financial Results"}) client.call_tool("ppt_add_chart", { "session_id": "quarterly_report", "slide_index": 1, "chart_type": "bar", "chart_title": "Revenue by Department", "categories": ["Marketing", "Sales", "R&D", "Support"], "series_names": ["Q3 2024"], "series_values": [[125000, 240000, 175000, 98000]] }) client.call_tool("ppt_save_presentation", {"session_id": "quarterly_report"}) # --- Browser Automation --- # Create browser session and navigate session_id = client.call_tool("browserbase_create_session", {"sessionId": "browser1"}) client.call_tool("browserbase_navigate", {"sessionId": "browser1", "url": "https://example.com"}) content = client.call_tool("browserbase_get_content", {"sessionId": "browser1"}) client.call_tool("browserbase_close_session", {"sessionId": "browser1"}) # --- Advanced Problem-Solving --- # Use sequential thinking to break down a complex problem client.call_tool("sequentialthinking", { "thought": "First, we need to identify the key variables in this optimization problem", "thoughtNumber": 1, "totalThoughts": 5, "nextThoughtNeeded": True }) ``` ### Example 3: Building a Complete Workflow ```python from mcp.client import MCPClient import json # Connect to the MCP server client = MCPClient("http://localhost:8000") # Scenario: Market research assistant that gathers data, analyzes it, and prepares a report def run_market_research(company_name, market_sector): """Perform comprehensive market research using various MCP tools""" print(f"Beginning market research for {company_name} in the {market_sector} sector...") # 1. Gather information about the company and market company_search = client.call_tool("brave_web_search", { "query": f"{company_name} company profile financial information", "count": 5 }) market_news = client.call_tool("news_search", { "q": f"{market_sector} market trends analysis", "page_size": 10 }) # 2. Get economic indicators relevant to the sector if market_sector.lower() in ["tech", "technology"]: indicator = "GB.XPD.RSDV.GD.ZS" # R&D expenditure elif market_sector.lower() in ["finance", "banking"]: indicator = "FM.LBL.BMNY.GD.ZS" # Broad money to GDP else: indicator = "NY.GDP.MKTP.KD.ZG" # GDP growth economic_data = client.call_tool("worldbank_get_indicator", { "country_id": "WLD", # World "indicator_id": indicator }) # 3. Create a report directory and save gathered information client.call_tool("create_directory", {"path": f"{company_name}_research"}) client.call_tool("write_file", { "path": f"{company_name}_research/company_info.json", "content": json.dumps(company_search, indent=2) }) client.call_tool("write_file", { "path": f"{company_name}_research/market_news.json", "content": json.dumps(market_news, indent=2) }) client.call_tool("write_file", { "path": f"{company_name}_research/economic_indicators.json", "content": json.dumps(economic_data, indent=2) }) # 4. Generate a PowerPoint presentation with the findings client.call_tool("ppt_create_presentation", {"session_id": "market_report"}) # Add title slide client.call_tool("ppt_add_slide", { "session_id": "market_report", "title": f"{company_name}: Market Analysis", "content": f"An overview of {company_name} in the {market_sector} sector" }) # Add company overview client.call_tool("ppt_add_slide", { "session_id": "market_report", "title": "Company Overview", "layout_index": 2 }) # Add market trends client.call_tool("ppt_add_slide", { "session_id": "market_report", "title": f"{market_sector} Market Trends", "layout_index": 2 }) # Add economic indicators chart client.call_tool("ppt_add_slide", { "session_id": "market_report", "title": "Economic Indicators", "layout_index": 5 }) # Save the presentation client.call_tool("ppt_save_presentation", { "session_id": "market_report", "file_path": f"{company_name}_research/market_report.pptx" }) print(f"Market research completed. Results saved to {company_name}_research/") return f"{company_name}_research/" # Execute the research function research_folder = run_market_research("Acme Corp", "technology") ``` ### Sample Claude Prompts Once set up, you can ask Claude to use the tools with prompts like: - "Search the web for the latest AI research papers and summarize the findings." - "Create a PowerPoint presentation about climate change with three slides." - "Use the weather_checker agent to tell me the current conditions in Tokyo." - "Can you use the quick_lookup agent to research quantum computing advances?" - "Download my QuickBooks invoice data and analyze our revenue for the past quarter." - "Set up a product on my Shopify store with these details and pricing." - "Get the current stock price and historical data for Tesla using Yahoo Finance." - "Analyze inflation trends using FRED economic data for the past 5 years." - "Use browser automation to fill out this form at [website URL]." - "Read the text file in my Downloads folder named 'project_notes.txt'." - "Get the latest news headlines about technology." ### Local Configuration If running locally, the server can be configured using environment variables or a `.env` file in the project root: ```env # MCP Server Configuration MCP_HOST=0.0.0.0 MCP_PORT=8000 MCP_LOG_LEVEL=info # debug, info, warning, error # Tool API Keys BRAVE_API_KEY=your_brave_api_key BROWSERBASE_API_KEY=your_browserbase_api_key BROWSERBASE_PROJECT_ID=your_browserbase_project_id NEWS_API_KEY=your_news_api_key # File System Configuration MCP_FILESYSTEM_DIRS=~/documents,~/downloads # Comma-separated list of allowed directories # Agent Configuration MCP_AGENT_DIR=agents # Directory to scan for agent files ``` ### Configuration UI The package includes a web-based configuration UI: ### Configuration UI The package includes a web-based configuration UI: ```bash # Run the configuration UI mcptoolkit-config ``` ```bash # Run the configuration UI mcptoolkit-config ``` Access the UI in your web browser at http://localhost:8501 Access the UI in your web browser at http://localhost:8501 ## Available Tools ### File System Tools - `read_file`: Read contents of a file - `read_multiple_files`: Read multiple files simultaneously - `write_file`: Create or overwrite a file - `edit_file`: Make line-based edits to a file - `create_directory`: Create a new directory - `list_directory`: Get directory contents - `directory_tree`: Get a recursive tree view - `move_file`: Move or rename files/directories - `search_files`: Search for files matching a pattern - `get_file_info`: Get file metadata - `list_allowed_directories`: List allowed directories - **Browser_Automation:** - `playwright_launch_browser`: Launch a new browser instance - `playwright_navigate`: Navigate to a URL - `playwright_screenshot`: Take a screenshot - `playwright_click`: Click on an element - `playwright_fill`: Fill an input field - `playwright_evaluate`: Execute JavaScript - `playwright_get_content`: Get the HTML content of a page ### Agent Tools - `run_agent`: Execute a registered agent with parameters - `list_agents`: List all available agents and their metadata ### E-Commerce Tools - **Shopify:** - `shopify_get_products`: Get product information - `shopify_create_product`: Create a new product - `shopify_update_product`: Update an existing product - `shopify_get_orders`: Get order information - `shopify_create_order`: Create a new order - `shopify_get_customers`: Get customer information ### Financial Tools - **QuickBooks:** - `quickbooks_get_accounts`: Get account information - `quickbooks_get_invoices`: Get invoice information - `quickbooks_create_invoice`: Create an invoice - `quickbooks_get_customers`: Get customer information - `quickbooks_get_reports`: Generate financial reports ### Financial Data Tools - **Yahoo Finance:** - `yfinance`: Get stock quotes and historical data - `yfinance_get_quote`: Get current stock quote - `yfinance_get_history`: Get historical stock data - `yfinance_get_info`: Get detailed company information - `yfinance_get_options`: Get options chain data - `yfinance_get_recommendations`: Get analyst recommendations - **FRED (Federal Reserve Economic Data):** - `fred_get_series`: Get economic data series - `fred_get_series_info`: Get metadata about a series - `fred_search`: Search for economic data series - `fred_get_category`: Browse data by category - `fred_get_releases`: Get economic data releases - `fred_get_sources`: Get data sources ### Time Tools - `get_current_time`: Get current time in a specified timezone - `convert_time`: Convert time between timezones ### Sequential Thinking - `sequentialthinking`: A tool for breaking down complex problems using a step-by-step thinking process ### Brave Search - `brave_web_search`: Perform web searches - `brave_local_search`: Search for local businesses and places ### World Bank API - `worldbank_get_indicator`: Get indicator data for a country ### News API - `news_top_headlines`: Get top news headlines - `news_search`: Search for news articles - `news_sources`: List available news sources ### PowerPoint Tools - `ppt_create_presentation`: Create a new PowerPoint presentation - `ppt_open_presentation`: Open an existing presentation - `ppt_save_presentation`: Save a presentation - `ppt_add_slide`: Add a new slide - `ppt_add_text`: Add text to a slide - `ppt_add_image`: Add an image to a slide - `ppt_add_chart`: Add a chart to a slide - `ppt_add_table`: Add a table to a slide - `ppt_analyze_presentation`: Analyze presentation structure - `ppt_enhance_presentation`: Suggest enhancements - `ppt_generate_presentation`: Generate a presentation from text - `ppt_command`: Process natural language commands For a complete list of available tools, see the documentation or browse the tools directory. For a complete list of available tools, see the documentation or browse the tools directory. ## Development ### Adding a New Agent 1. Create a new file in the `agents` directory (e.g., `my_agent.py`) 2. Follow the agent template pattern: ```python from agent_registry import MCPAgent, register_agent @register_agent class MyCustomAgent(MCPAgent): agent_name = "my_custom_agent" agent_description = "Description of what my agent does" def run(self, params): # Agent logic here return {"result": "Agent output"} ``` 3. Save the file - the agent will be automatically detected and loaded ### Adding a New Tool Module 1. Create a new file in the `tools` directory (e.g., `my_tool.py`) 2. Follow the existing module pattern: - Create service class - Define tool functions - Implement registration functions 3. Update `mcp_unified_server.py` to import and register your new module ### Extending an Existing Tool Module 1. Add new methods to the service class 2. Add new tool functions 3. Update the registration function to include your new tools ### Development with Docker You can use Docker for development to ensure a consistent environment: ```bash # Build a development image docker build -t mcp-tool-kit:dev . # Run with source code mounted for development docker run -p 8000:8000 \ -v $(pwd):/app \ -v ~/documents:/app/documents \ mcp-tool-kit:dev ``` This mounts your local repository into the container, so changes to the code are reflected immediately (for most files). ## Philosophical Perspective: The Human-AI Cognitive Partnership The MCP Tool Kit represents a paradigm shift in how we conceptualize the relationship between human intelligence and AI systems. Rather than positioning AI as a mere tool for task automation, this framework establishes a cognitive partnership where human strategic thinking and AI operational capabilities complement each other in profound ways. The agentic architecture embodies a transformative vision: AI systems that can independently interpret context, make decisions within bounded parameters, and execute complex sequences of actions—all while maintaining human oversight and strategic direction. This represents not merely a technological advance, but a fundamentally new model for human-machine collaboration. In this evolving cognitive landscape, the most successful implementations will be those that thoughtfully balance technological potential with human capabilities, creating interfaces that enhance rather than replace human decision-making and creativity. ## Troubleshooting - **Module not loading**: Check the import path and dependencies - **API key errors**: Verify your API keys in the `.env` file - **Permission errors**: Check the allowed directories in `MCP_FILESYSTEM_DIRS` - **Connection errors**: Ensure the server is running and the port is accessible - **Agent not detected**: Verify the agent file is in the correct directory and follows the required format ## License The MCP Unified Server is licensed under the MIT License. ## Acknowledgements This project uses several open-source libraries and APIs: - MCP SDK for Claude AI assistants - NewsAPI for news access - Brave Search API for web search - World Bank API for economic data - python-pptx for PowerPoint manipulation - XlsxWriter for Excel spreadsheets