# commitmessagequality **Repository Path**: ecust-dp/commitmessagequality ## Basic Information - **Project Name**: commitmessagequality - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-02 - **Last Updated**: 2024-09-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Commit Message Quality Code replication for **Commit Message Quality** experiments in the *ICSE 2023* paper: Commit Message Matters: Investigating Impact and Evolution of Commit Message Quality &the *ICSE 2022* paper: What Makes a Good Commit Message? ## python environment setup: ```shell conda create -n commit_message_quality python=3.8 pip install allennlp allennlp-models ``` ## Three Part of Experiments: ### Part 1: preprocess commit message 1. clone the **project** in **cloned** folder 2. prepare the **data.csv** include **commit_hash** 3. run the **preprocess.py** by: ```shell python preprocessor.py {current_project_commitid_csv} {project_name} {github token} {orgnazition} {marker} ``` ### Part 2: train and evaluate the model ### Part 3:evaluate your commit message quality 1. put the dataset with the py file in the same folder 2. run on the GPU machine 3. move the result to the **model_predict** folder 4. run the **vote.ipynb** ## Data exxample for JIT-Fine(JIT-DEFECT4J) Datasets - Preprocess_data_newest - which is the newest preprocessed commit message data extracted in 2024/09/10 - JITFine_unlabel_cmsgquality.csv - the unlabeled preprocessed commit message data for JIT-Fine - model——predict - the model(XGBOOST,BIGRU,BILSTM) prediction result ### Overview of JIT-DEFECT4J Datasets Commit Message Quality
