# atari-rl **Repository Path**: goforfar/atari-rl ## Basic Information - **Project Name**: atari-rl - **Description**: Atari - Deep Reinforcement Learning algorithms in TensorFlow - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Atari - Deep Reinforcement Learning algorithms in TensorFlow [![Build Status](https://travis-ci.org/brendanator/atari-rl.svg?branch=master)](https://travis-ci.org/brendanator/atari-rl) Learning to play Atari in TensorFlow using Deep Reinforcement Learning ## Setup ``` git clone https://github.com/brendanator/atari-rl git submodule update --init conda create --name atari-rl python=3.5 source activate atari-rl conda install -y -c https://conda.binstar.org/menpo opencv3 conda install -y h5py numpy pip install tensorflow pip install 'gym[atari]' ``` with without pip ``` virtualenv --system-site-packages -p python3 envName pip install opencv-python pip install h5py pip install 'gym[atari]' pip install numpy pip install tensorflow ``` Python 2.7 is also supported ## Usage - Show all options - `python main.py --help` - Play a specific [Atari game](https://github.com/mgbellemare/Arcade-Learning-Environment/blob/master/src/games/Roms.cpp#L17) - `python main.py --game Breakout` ## Papers Implemented - :white_check_mark: [Human Level Control through Deep Reinforcement Learning](http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf) - `python main.py` - :white_check_mark: [Deep Reinforcement Learning with Double Q-learning](https://arxiv.org/pdf/1509.06461.pdf) - `python main.py --double_q` - :white_check_mark: [Dueling Network Architectures for Deep Reinforcement Learning](https://arxiv.org/pdf/1511.06581.pdf) - `python main.py --dueling` - :white_check_mark: [Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening](https://arxiv.org/pdf/1611.01606.pdf) - `python main.py --optimality_tightening` - :white_check_mark: [Prioritized Experience Replay](https://arxiv.org/pdf/1511.05952.pdf) - `python main.py --replay_prioritized` - Only proportional prioritized replay is implemented - :white_check_mark: [Unifying Count-Based Exploration and Intrinsic Motivation](https://arxiv.org/pdf/1606.01868.pdf) - `python main.py --exploration_bonus` - :white_check_mark: [Deep Exploration via Bootstrapped DQN](https://arxiv.org/pdf/1602.04621.pdf) - `python main.py --bootstrapped` - :white_check_mark: [Increasing the Action Gap: New Operators for Reinforcement Learning](https://arxiv.org/pdf/1512.04860.pdf) - `python main.py --persistent_advantage_learning` - :white_check_mark: [Learning values across many orders of magnitudes](https://arxiv.org/pdf/1602.07714.pdf) - `python main.py --reward_scaling` - :white_check_mark: [Asynchronous Methods for Deep Reinforcement Learning](https://arxiv.org/pdf/1602.01783.pdf) - `python main.py --async one_step` - `python main.py --async n_step` - `python main.py --async n_step --sarsa` - `python main.py --async a3c` - :x: [Deep Recurrent Q-Learning for Partially Observable MDPs](https://arxiv.org/pdf/1507.06527.pdf) - :x: [Safe and efficient Off-Policy Reinforcement Learning](https://arxiv.org/pdf/1606.02647.pdf) - :x: [Continuous Deep Q-Learning with Model-based Acceleration](https://arxiv.org/pdf/1603.00748.pdf) ## Acknowledgements - https://github.com/mgbellemare/SkipCTS - Used in implementation of [Unifying Count-Based Exploration and Intrinsic Motivation](https://arxiv.org/pdf/1606.01868.pdf) - https://github.com/Kaixhin/Atari - https://github.com/carpedm20/deep-rl-tensorflow