# optuna **Repository Path**: gongchengqi/optuna ## Basic Information - **Project Name**: optuna - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2024-03-08 - **Last Updated**: 2024-06-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
# Optuna: A hyperparameter optimization framework [![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://www.python.org) [![pypi](https://img.shields.io/pypi/v/optuna.svg)](https://pypi.python.org/pypi/optuna) [![conda](https://img.shields.io/conda/vn/conda-forge/optuna.svg)](https://anaconda.org/conda-forge/optuna) [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/optuna/optuna) [![Read the Docs](https://readthedocs.org/projects/optuna/badge/?version=stable)](https://optuna.readthedocs.io/en/stable/) [![Codecov](https://codecov.io/gh/optuna/optuna/branch/master/graph/badge.svg)](https://codecov.io/gh/optuna/optuna) :link: [**Website**](https://optuna.org/) | :page_with_curl: [**Docs**](https://optuna.readthedocs.io/en/stable/) | :gear: [**Install Guide**](https://optuna.readthedocs.io/en/stable/installation.html) | :pencil: [**Tutorial**](https://optuna.readthedocs.io/en/stable/tutorial/index.html) | :bulb: [**Examples**](https://github.com/optuna/optuna-examples) *Optuna* is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, *define-by-run* style user API. Thanks to our *define-by-run* API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. ## :fire: Key Features Optuna has modern functionalities as follows: - [Lightweight, versatile, and platform agnostic architecture](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/001_first.html) - Handle a wide variety of tasks with a simple installation that has few requirements. - [Pythonic search spaces](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html) - Define search spaces using familiar Python syntax including conditionals and loops. - [Efficient optimization algorithms](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/003_efficient_optimization_algorithms.html) - Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials. - [Easy parallelization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/004_distributed.html) - Scale studies to tens or hundreds of workers with little or no changes to the code. - [Quick visualization](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/005_visualization.html) - Inspect optimization histories from a variety of plotting functions. ## Basic Concepts We use the terms *study* and *trial* as follows: - Study: optimization based on an objective function - Trial: a single execution of the objective function Please refer to the sample code below. The goal of a *study* is to find out the optimal set of hyperparameter values (e.g., `regressor` and `svr_c`) through multiple *trials* (e.g., `n_trials=100`). Optuna is a framework designed for automation and acceleration of optimization *studies*.
Sample code with scikit-learn [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/optuna/optuna-examples/blob/main/quickstart.ipynb) ```python import ... # Define an objective function to be minimized. def objective(trial): # Invoke suggest methods of a Trial object to generate hyperparameters. regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest']) if regressor_name == 'SVR': svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True) regressor_obj = sklearn.svm.SVR(C=svr_c) else: rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32) regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth) X, y = sklearn.datasets.fetch_california_housing(return_X_y=True) X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0) regressor_obj.fit(X_train, y_train) y_pred = regressor_obj.predict(X_val) error = sklearn.metrics.mean_squared_error(y_val, y_pred) return error # An objective value linked with the Trial object. study = optuna.create_study() # Create a new study. study.optimize(objective, n_trials=100) # Invoke optimization of the objective function. ```
> [!NOTE] > More examples can be found in [optuna/optuna-examples](https://github.com/optuna/optuna-examples). > > The examples cover diverse problem setups such as multi-objective optimization, constrained optimization, pruning, and distributed optimization. ## Installation Optuna is available at [the Python Package Index](https://pypi.org/project/optuna/) and on [Anaconda Cloud](https://anaconda.org/conda-forge/optuna). ```bash # PyPI $ pip install optuna ``` ```bash # Anaconda Cloud $ conda install -c conda-forge optuna ``` > [!IMPORTANT] > Optuna supports Python 3.7 or newer. > > Also, we provide Optuna docker images on [DockerHub](https://hub.docker.com/r/optuna/optuna). ## Integrations Optuna has integration features with various third-party libraries. Integrations can be found in [optuna/optuna-integration](https://github.com/optuna/optuna-integration) and the document is available [here](https://optuna-integration.readthedocs.io/en/stable/index.html).
Supported integration libraries * [Catalyst](https://github.com/optuna/optuna-examples/tree/main/pytorch/catalyst_simple.py) * [Catboost](https://github.com/optuna/optuna-examples/tree/main/catboost/catboost_pruning.py) * [Dask](https://github.com/optuna/optuna-examples/tree/main/dask/dask_simple.py) * [fastai (v2)](https://github.com/optuna/optuna-examples/tree/main/fastai/fastaiv2_simple.py) * [Keras](https://github.com/optuna/optuna-examples/tree/main/keras/keras_integration.py) * [LightGBM](https://github.com/optuna/optuna-examples/tree/main/lightgbm/lightgbm_integration.py) * [MLflow](https://github.com/optuna/optuna-examples/tree/main/mlflow/keras_mlflow.py) * [MXNet](https://github.com/optuna/optuna-examples/tree/main/mxnet/mxnet_integration.py) * [PyTorch](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_simple.py) * [PyTorch Ignite](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_ignite_simple.py) * [PyTorch Lightning](https://github.com/optuna/optuna-examples/tree/main/pytorch/pytorch_lightning_simple.py) * [TensorBoard](https://github.com/optuna/optuna-examples/tree/main/tensorboard/tensorboard_simple.py) * [TensorFlow](https://github.com/optuna/optuna-examples/tree/main/tensorflow/tensorflow_estimator_integration.py) * [tf.keras](https://github.com/optuna/optuna-examples/tree/main/tfkeras/tfkeras_integration.py) * [Weights & Biases](https://github.com/optuna/optuna-examples/tree/main/wandb/wandb_integration.py) * [XGBoost](https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py)
## Web Dashboard [Optuna Dashboard](https://github.com/optuna/optuna-dashboard) is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importance, etc. in graphs and tables. You don't need to create a Python script to call [Optuna's visualization](https://optuna.readthedocs.io/en/stable/reference/visualization/index.html) functions. Feature requests and bug reports are welcome! ![optuna-dashboard](https://user-images.githubusercontent.com/5564044/204975098-95c2cb8c-0fb5-4388-abc4-da32f56cb4e5.gif) `optuna-dashboard` can be installed via pip: ```shell $ pip install optuna-dashboard ``` > [!TIP] > Please check out the convenience of Optuna Dashboard using the sample code below.
Sample code to launch Optuna Dashboard Save the following code as `optimize_toy.py`. ```python import optuna def objective(trial): x1 = trial.suggest_float("x1", -100, 100) x2 = trial.suggest_float("x2", -100, 100) return x1 ** 2 + 0.01 * x2 ** 2 study = optuna.create_study(storage="sqlite:///db.sqlite3") # Create a new study with database. study.optimize(objective, n_trials=100) ``` Then try the commands below: ```shell # Run the study specified above $ python optimize_toy.py # Launch the dashboard based on the storage `sqlite:///db.sqlite3` $ optuna-dashboard sqlite:///db.sqlite3 ... Listening on http://localhost:8080/ Hit Ctrl-C to quit. ```
## Communication - [GitHub Discussions] for questions. - [GitHub Issues] for bug reports and feature requests. [GitHub Discussions]: https://github.com/optuna/optuna/discussions [GitHub issues]: https://github.com/optuna/optuna/issues ## Contribution Any contributions to Optuna are more than welcome! If you are new to Optuna, please check the [good first issues](https://github.com/optuna/optuna/labels/good%20first%20issue). They are relatively simple, well-defined, and often good starting points for you to get familiar with the contribution workflow and other developers. If you already have contributed to Optuna, we recommend the other [contribution-welcome issues](https://github.com/optuna/optuna/labels/contribution-welcome). For general guidelines on how to contribute to the project, take a look at [CONTRIBUTING.md](./CONTRIBUTING.md). ## Reference If you use Optuna in one of your research projects, please cite [our KDD paper](https://doi.org/10.1145/3292500.3330701) "Optuna: A Next-generation Hyperparameter Optimization Framework":
BibTeX ```bibtex @inproceedings{akiba2019optuna, title={{O}ptuna: A Next-Generation Hyperparameter Optimization Framework}, author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori}, booktitle={The 25th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining}, pages={2623--2631}, year={2019} } ```