# FSRCNN-pytorch **Repository Path**: karabaobi/FSRCNN-pytorch ## Basic Information - **Project Name**: FSRCNN-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-03-02 - **Last Updated**: 2022-04-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FSRCNN This repository is implementation of the ["Accelerating the Super-Resolution Convolutional Neural Network"](https://arxiv.org/abs/1608.00367).
## Differences from the original - Added the zero-padding - Used the Adam instead of the SGD ## Requirements - PyTorch 1.0.0 - Numpy 1.15.4 - Pillow 5.4.1 - h5py 2.8.0 - tqdm 4.30.0 ## Train The 91-image, Set5 dataset converted to HDF5 can be downloaded from the links below. | Dataset | Scale | Type | Link | |---------|-------|------|------| | 91-image | 2 | Train | [Download](https://www.dropbox.com/s/01z95js39kgw1qv/91-image_x2.h5?dl=0) | | 91-image | 3 | Train | [Download](https://www.dropbox.com/s/qx4swlt2j7u4twr/91-image_x3.h5?dl=0) | | 91-image | 4 | Train | [Download](https://www.dropbox.com/s/vobvi2nlymtvezb/91-image_x4.h5?dl=0) | | Set5 | 2 | Eval | [Download](https://www.dropbox.com/s/4kzqmtqzzo29l1x/Set5_x2.h5?dl=0) | | Set5 | 3 | Eval | [Download](https://www.dropbox.com/s/kyhbhyc5a0qcgnp/Set5_x3.h5?dl=0) | | Set5 | 4 | Eval | [Download](https://www.dropbox.com/s/ihtv1acd48cof14/Set5_x4.h5?dl=0) | Otherwise, you can use `prepare.py` to create custom dataset. ```bash python train.py --train-file "BLAH_BLAH/91-image_x3.h5" \ --eval-file "BLAH_BLAH/Set5_x3.h5" \ --outputs-dir "BLAH_BLAH/outputs" \ --scale 3 \ --lr 1e-3 \ --batch-size 16 \ --num-epochs 20 \ --num-workers 8 \ --seed 123 ``` ## Test Pre-trained weights can be downloaded from the links below. | Model | Scale | Link | |-------|-------|------| | FSRCNN(56,12,4) | 2 | [Download](https://www.dropbox.com/s/1k3dker6g7hz76s/fsrcnn_x2.pth?dl=0) | | FSRCNN(56,12,4) | 3 | [Download](https://www.dropbox.com/s/pm1ed2nyboulz5z/fsrcnn_x3.pth?dl=0) | | FSRCNN(56,12,4) | 4 | [Download](https://www.dropbox.com/s/vsvumpopupdpmmu/fsrcnn_x4.pth?dl=0) | The results are stored in the same path as the query image. ```bash python test.py --weights-file "BLAH_BLAH/fsrcnn_x3.pth" \ --image-file "data/butterfly_GT.bmp" \ --scale 3 ``` ## Results PSNR was calculated on the Y channel. ### Set5 | Eval. Mat | Scale | Paper | Ours (91-image) | |-----------|-------|-------|-----------------| | PSNR | 2 | 36.94 | 37.12 | | PSNR | 3 | 33.06 | 33.22 | | PSNR | 4 | 30.55 | 30.50 |
Original
BICUBIC x3
FSRCNN x3 (34.66 dB)
Original
BICUBIC x3
FSRCNN x3 (28.55 dB)