# awesome-video-anomaly-detection **Repository Path**: liugw100/awesome-video-anomaly-detection ## Basic Information - **Project Name**: awesome-video-anomaly-detection - **Description**: Papers for Video Anomaly Detection, released codes collection, Performance Comparision. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-02-24 - **Last Updated**: 2022-02-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # awesome-video-anomaly-detection [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) Papers for Video Anomaly Detection, released codes collections. Any addition or bug please open an issue, pull requests or e-mail me by `fjchange@hotmail.com ` ## Datasets 0. UMN [`Download link`](http://mha.cs.umn.edu/) 1. UCSD [`Download link`](http://www.svcl.ucsd.edu/projects/anomaly/dataset.html) 2. Subway Entrance/Exit [`Download link`](http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/) 3. CUHK Avenue [`Download link`](http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html) - HD-Avenue [Skeleton-based](#01902) 4. ShanghaiTech [`Download link`](https://svip-lab.github.io/dataset/campus_dataset.html) - HD-ShanghaiTech [Skeleton-based](#01902) 5. UCF-Crime (Weakly Supervised) - UCFCrime2Local (subset of UCF-Crime but with spatial annotations.) [`Download_link`](http://imagelab.ing.unimore.it/UCFCrime2Local), [Ano-Locality](#21902) - Spatial Temporal Annotations [`Download_link`](https://github.com/xuzero/UCFCrime_BoundingBox_Annotation) [Background-Bias](#21901) 6. Traffic-Train 7. Belleview 8. Street Scene (WACV 2020) [Street Scenes](#02001), [`Download link`](https://www.merl.com/demos/video-anomaly-detection) 9. IITB-Corridor (WACV 2020) [Rodrigurs.etl](#02002) 10. XD-Violence (ECCV 2020) [XD-Violence](#12003)[`Download link`](https://roc-ng.github.io/XD-Violence/) 11. ADOC (ACCV 2020) [ADOC](#02012)[`Download_link`](http://qil.uh.edu/main/datasets/) __The Datasets belowed are about Traffic Accidents Anticipating in Dashcam videos or Surveillance videos__ 1. CADP [(CarCrash Accidents Detection and Prediction)](https://github.com/ankitshah009/CarCrash_forecasting_and_detection) 2. DAD [paper](https://yuxng.github.io/chan_accv16.pdf), [`Download link`](https://aliensunmin.github.io/project/dashcam/) 3. A3D [paper](https://arxiv.org/abs/1903.00618?), [`Download link`](https://github.com/MoonBlvd/tad-IROS2019) 4. DADA [`Download link`](https://github.com/JWFangit/LOTVS-DADA) 5. DoTA [`Download_link`](https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly) 6. Iowa DOT [`Download_link`](https://www.aicitychallenge.org/2018-ai-city-challenge/) 1. Driver_Anomaly [Project_link](https://github.com/okankop/Driver-Anomaly-Detection) ----- ## Unsupervised ### 2016 1. [Conv-AE] [Learning Temporal Regularity in Video Sequences](https://openaccess.thecvf.com/content_cvpr_2016/papers/Hasan_Learning_Temporal_Regularity_CVPR_2016_paper.pdf), `CVPR 16`. [Code](https://github.com/iwyoo/TemporalRegularityDetector-tensorflow/blob/master/model.py) ### 2017 1. [Hinami.etl] [Joint Detection and Recounting of Abnormal Events by Learning Deep Generic Knowledge](http://openaccess.thecvf.com/content_ICCV_2017/papers/Hinami_Joint_Detection_and_ICCV_2017_paper.pdf), `ICCV 2017`. (Explainable VAD) 2. [Stacked-RNN] [A revisit of sparse coding based anomaly detection in stacked rnn framework](http://openaccess.thecvf.com/content_ICCV_2017/papers/Luo_A_Revisit_of_ICCV_2017_paper.pdf), `ICCV 2017`. [code](https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection) 3. [ConvLSTM-AE] [Remembering history with convolutional LSTM for anomaly detection](https://ieeexplore.ieee.org/abstract/document/8019325), `ICME 2017`.[Code](https://github.com/zachluo/convlstm_anomaly_detection) 4. [Conv3D-AE] [Spatio-Temporal AutoEncoder for Video Anomaly Detection](https://dl.acm.org/doi/abs/10.1145/3123266.3123451),`ACM MM 17`. 5. [Unmasking] [Unmasking the abnormal events in video](http://openaccess.thecvf.com/content_ICCV_2017/papers/Ionescu_Unmasking_the_Abnormal_ICCV_2017_paper.pdf), `ICCV 17`. 6. [DeepAppearance] [Deep appearance features for abnormal behavior detection in video](https://www.researchgate.net/profile/Radu_Tudor_Ionescu/publication/320361315_Deep_Appearance_Features_for_Abnormal_Behavior_Detection_in_Video/links/5a469e9fa6fdcce1971b7258/Deep-Appearance-Features-for-Abnormal-Behavior-Detection-in-Video.pdf) ### 2018 1. [FramePred] [Future Frame Prediction for Anomaly Detection -- A New Baseline](http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Future_Frame_Prediction_CVPR_2018_paper.pdf), `CVPR 2018`. [code](https://github.com/StevenLiuWen/ano_pred_cvpr2018) 2. [ALOOC] [Adversarially Learned One-Class Classifier for Novelty Detection](http://openaccess.thecvf.com/content_cvpr_2018/papers/Sabokrou_Adversarially_Learned_One-Class_CVPR_2018_paper.pdf), `CVPR 2018`. [code](https://github.com/khalooei/ALOCC-CVPR2018) 3. [Detecting Abnormality Without Knowing Normality: A Two-stage Approach for Unsupervised Video Abnormal Event Detection](https://dl.acm.org/doi/10.1145/3240508.3240615), `ACM MM 18`. ### 2019 1. [Mem-AE] [Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection](http://openaccess.thecvf.com/content_ICCV_2019/papers/Gong_Memorizing_Normality_to_Detect_Anomaly_Memory-Augmented_Deep_Autoencoder_for_Unsupervised_ICCV_2019_paper.pdf), `ICCV 2019`.[code](https://github.com/donggong1/memae-anomaly-detection) 2. [Skeleton-based] [Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos](http://openaccess.thecvf.com/content_CVPR_2019/papers/Morais_Learning_Regularity_in_Skeleton_Trajectories_for_Anomaly_Detection_in_Videos_CVPR_2019_paper.pdf), `CVPR 2019`.[code](https://github.com/RomeroBarata/skeleton_based_anomaly_detection) 3. [Object-Centric] [Object-Centric Auto-Encoders and Dummy Anomalies for Abnormal Event Detection](http://openaccess.thecvf.com/content_CVPR_2019/papers/Ionescu_Object-Centric_Auto-Encoders_and_Dummy_Anomalies_for_Abnormal_Event_Detection_in_CVPR_2019_paper.pdf), `CVPR 2019`. 4. [Appearance-Motion Correspondence] [Anomaly Detection in Video Sequence with Appearance-Motion Correspondence](http://openaccess.thecvf.com/content_ICCV_2019/papers/Nguyen_Anomaly_Detection_in_Video_Sequence_With_Appearance-Motion_Correspondence_ICCV_2019_paper.pdf), `ICCV 2019`.[code](https://github.com/nguyetn89/Anomaly_detection_ICCV2019) 5. [AnoPCN][AnoPCN: Video Anomaly Detection via Deep Predictive Coding Network](https://people.cs.clemson.edu/~jzwang/20018630/mm2019/p1805-ye.pdf), ACM MM 2019. ### 2020 1. [Street-Scene] [Street Scene: A new dataset and evaluation protocol for video anomaly detection](http://openaccess.thecvf.com/content_WACV_2020/papers/Ramachandra_Street_Scene_A_new_dataset_and_evaluation_protocol_for_video_WACV_2020_paper.pdf), `WACV 2020`. 2. [Rodrigurs.etl]) [Multi-timescale Trajectory Prediction for Abnormal Human Activity Detection](http://openaccess.thecvf.com/content_WACV_2020/papers/Rodrigues_Multi-timescale_Trajectory_Prediction_for_Abnormal_Human_Activity_Detection_WACV_2020_paper.pdf), `WACV 2020`. 3. [GEPC] [Graph Embedded Pose Clustering for Anomaly Detection](https://arxiv.org/pdf/1912.11850.pdf), `CVPR 2020`.[code](https://github.com/amirmk89/gepc) 4. [Self-trained] [Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection](https://arxiv.org/pdf/2003.06780.pdf), `CVPR 2020`. 5. [MNAD] [Learning Memory-guided Normality for Anomaly Detection](https://arxiv.org/pdf/2003.13228.pdf), `CVPR 2020`. [code](https://cvlab.yonsei.ac.kr/projects/MNAD) 6. [Continual-AD]] [Continual Learning for Anomaly Detection in Surveillance Videos](https://arxiv.org/pdf/2004.07941),`CVPR 2020 Worksop.` 7. [OGNet] [Old is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zaheer_Old_Is_Gold_Redefining_the_Adversarially_Learned_One-Class_Classifier_Training_CVPR_2020_paper.pdf), `CVPR 2020`. [code](https://github.com/xaggi/OGNet) 8. [Any-Shot] [Any-Shot Sequential Anomaly Detection in Surveillance Videos](http://openaccess.thecvf.com/content_CVPRW_2020/papers/w54/Doshi_Any-Shot_Sequential_Anomaly_Detection_in_Surveillance_Videos_CVPRW_2020_paper.pdf),`CVPR 2020 workshop`. 9. [Few-Shot][Few-Shot Scene-Adaptive Anomaly Detection](https://arxiv.org/pdf/2007.07843.pdf)`ECCV 2020 Spotlight` [code](https://github.com/yiweilu3/Few-shot-Scene-adaptive-Anomaly-Detection) 10. [CDAE][Clustering-driven Deep Autoencoder for Video Anomaly Detection](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123600324.pdf)`ECCV 2020` 11. [VEC][Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events](https://arxiv.org/abs/2008.11988)`ACM MM 2020 Oral` [code](https://github.com/yuguangnudt/VEC_VAD) 12. [ADOC][A Day on Campus - An Anomaly Detection Dataset for Events in a Single Camera] `ACCV 2020` 13. [CAC][Cluster Attention Contrast for Video Anomaly Detection](http://web.pkusz.edu.cn/adsp/files/2020/08/Cluster_Attention_Contrast_for_Video_Anomaly_Detection.pdf) `ACM MM 2020` 14. [STC-Graph][Scene-Aware Context Reasoning for Unsupervised Abnormal Event Detection in Videos](https://dl.acm.org/doi/pdf/10.1145/3394171.3413887) `ACM MM 2020` ### 2021 1. [AMCM][Appearance-Motion Memory Consistency Network for Video Anomaly Detection](https://www.aaai.org/AAAI21Papers/AAAI-4120.CaiR.pdf) `AAAI 2021` 2. [SSMT,Self-Supervised-Multi-Task][Anomaly Detection in Video via Self-Supervised and Multi-Task Learning](https://arxiv.org/pdf/2011.07491.pdf) `CVPR 2021` 3. [HF2-VAD][A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction](https://arxiv.org/pdf/2108.06852.pdf)`ICCV 2021 Oral` 4. [ROADMAP][Robust Unsupervised Video Anomaly Detection by Multipath Frame Prediction](https://arxiv.org/pdf/2011.02763)`TNNLS 2021` 5. [AEP][Abnormal Event Detection and Localization via Adversarial Event Prediction](https://ieeexplore.ieee.org/abstract/document/9346050/) `TNNLS 2021` ## Weakly-Supervised ### 2018 1. [Sultani.etl] [Real-world Anomaly Detection in Surveillance Videos](http://openaccess.thecvf.com/content_cvpr_2018/papers/Sultani_Real-World_Anomaly_Detection_CVPR_2018_paper.pdf), `CVPR 2018` [code](https://github.com/WaqasSultani/AnomalyDetectionCVPR2018) ### 2019 1. [GCN-Anomaly] [Graph Convolutional Label Noise Cleaner:Train a Plug-and-play Action Classifier for Anomaly Detection](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhong_Graph_Convolutional_Label_Noise_Cleaner_Train_a_Plug-And-Play_Action_Classifier_CVPR_2019_paper.pdf),` CVPR 2019`, [code](https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-Detection) 2. [MLEP] [Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies](https://pdfs.semanticscholar.org/e878/6acbfabaf4938c9c8e2d3a15e0f110a1ec7f.pdf), `IJCAI 2019`[code](https://github.com/svip-lab/MLEP). 3. [IBL] [Temporal Convolutional Network with Complementary Inner Bag Loss For Weakly Supervised Anomaly Detection](https://ieeexplore.ieee.org/abstract/document/8803657/). `ICIP 19`. 4. [Motion-Aware] [Motion-Aware Feature for Improved Video Anomaly Detection](https://arxiv.org/pdf/1907.10211). `BMVC 19`. ### 2020 1. [Siamese] [Learning a distance function with a Siamese network to localize anomalies in videos](https://arxiv.org/abs/2001.09189), `WACV 2020`. 2. [AR-Net] [Weakly Supervised Video Anomaly Detection via Center-Guided Discrimative Learning](https://ieeexplore.ieee.org/document/9102722),` ICME 2020`.[code](https://github.com/wanboyang/Anomaly_AR_Net_ICME_2020) 3. ['XD-Violence'] [Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision](https://arxiv.org/pdf/2007.04687.pdf) `ECCV 2020` 4. [CLAWS] [CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy Suppression for Anomalous Event Detection](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123670358.pdf) `ECCV 2020` ### 2021 1. [MIST] [MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection](https://arxiv.org/abs/2104.01633) `CVPR 2021` [Project Page](https://kiwi-fung.win/2021/04/28/MIST/) 2. [RTFM] [Weakly-supervised Video Anomaly Detection with Contrastive Learning of Long and Short-range Temporal Features](https://arxiv.org/pdf/2101.10030.pdf) `ICCV 2021`[Code](https://github.com/tianyu0207/RTFM) 3. [STAD][Weakly-Supervised Spatio-Temporal Anomaly Detection in Surveillance Video](https://arxiv.org/pdf/2108.03825) `IJCAI 2021` 4. [WSAL][Localizing Anomalies From Weakly-Labeled Videos](https://arxiv.org/pdf/2008.08944)`TIP 2021` [Code](https://github.com/ktr-hubrt/WSAL) 5. [CRFD][Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection](https://ieeexplore.ieee.org/abstract/document/9369126/)`TIP 2021` ## Supervised ### 2019 1. [Background-Bias][Exploring Background-bias for Anomaly Detection in Surveillance Videos](https://dl.acm.org/doi/abs/10.1145/3343031.3350998), `ACM MM 19`. 2. [Ano-Locality][Anomaly locality in video suveillance](https://arxiv.org/pdf/1901.10364). ## Others ### 2020 1. [Few-Shot][Few-Shot Scene-Adaptive Anomaly Detection](https://arxiv.org/pdf/2007.07843) `ECCV 2020`[code](https://github.com/yiweilu3/Few-shot-Scene-adaptive-Anomaly-Detection) ------ ## Reviews / Surveys 1. An Overview of Deep Learning Based Methods for Unsupervised and Semi-Supervised Anomaly Detection in Videos, J. Image, 2018.[page](https://beedotkiran.github.io/VideoAnomaly.html) 2. DEEP LEARNING FOR ANOMALY DETECTION: A SURVEY, [paper](https://arxiv.org/pdf/1901.03407.pdf) 3. Video Anomaly Detection for Smart Surveillance [paper](https://arxiv.org/pdf/2004.00222.pdf) ## Books 1. Outlier Analysis. Charu C. Aggarwal ## Specific Scene ------ Generally, anomaly detection in recent researches are based on the datasets from pedestrian (likes UCSD, Avenue, ShanghaiTech, etc.), or UCF-Crime (real-world anomaly). However some focus on specific scene as follows. ### Traffic CVPR workshop, AI City Challenge series. #### First-Person Traffic ​ Unsupervised Traffic Accident Detection in First-Person Videos, IROS 2019. #### Driving ​ When, Where, and What? A New Dataset for Anomaly Detection in Driving Videos. [github](https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly) ### Old-man Fall Down ### Fighting/Violence 1. Localization Guided Fight Action Detection in Surveillance Videos. ICME 2019. 2. ### Social/ Group Anomaly 1. Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks, Neurips 2019. ## Related Topics: 1. Video Representation (Unsupervised Video Representation, reconstruction, prediction etc.) 2. Object Detection 3. Pedestrian Detection 4. Skeleton Detection 5. Graph Neural Networks 6. GAN 7. Action Recognition / Temporal Action Localization 8. Metric Learning 9. Label Noise Learning 10. Cross-Modal/ Multi-Modal 11. Dictionary Learning 12. One-Class Classification / Novelty Detection / Out-of-Disturibution Detection 13. Action Recognition. - Human in Events: A Large-Scale Benchmark for Human-centric Video Analysis in Complex Events. ACM MM 2020 workshop. ## Performance Evaluation Methods 1. AUC 2. PR-AUC 3. Score Gap 4. False Alarm Rate on Normal with 0.5 as threshold (Weakly supervised, proposed in CVPR 18) ## Performance Comparison on UCF-Crime | Model | Reported on Convference/Journal | Supervised | Feature | Encoder-based | 32 Segments | AUC (%) | FAR@0.5 on Normal (%) | | --------------------------------------------------- | ------------------------------- | ---------- | -------- | ------- | ----------- | ------- | --------------------- | | [Sultani.etl](#11801) | CVPR 18 | Weakly | C3D RGB | X | √ | 75.41 | 1.9 | | [IBL](#11903) | ICIP 19 | Weakly | C3D RGB | X | √ | 78.66 | - | | [Motion-Aware](#11904) | BMVC 19 | Weakly | PWC Flow | X | √ | 79.0 | - | | [GCN-Anomaly](#11901) | CVPR 19 | Weakly | TSN RGB | √ | X | 82.12 | 0.1 | | [ST-Graph](#02014) | ACM MM 20 | Un | - | √ | X | 72.7 | | | [Background-Bias](#21901) | ACM MM 19 | Fully | NLN RGB | √ | X | 82.0 | - | | [CLAWS](#12004) | ECCV 20 | Weakly | C3D RGB | √ | X | 83.03 | - | | [MIST](#12101) | CVPR 21 | Weakly | I3D RGB | √ | X | 82.30 | 0.13 | | [RTFM](#12102) | ICCV 21 | Weakly | I3D RGB | X | √ | 84.03 | - | | [WSAL](#12104) | TIP 21 | Weakly | I3D RGB | X | √ | 85.38 | - | | [CRFD](#12105) | TIP 21 | Weakly | I3D RGB | X | √ | 84.89 | - | ## Performance Comparison on ShanghaiTech | Model | Reported on Conference/Journal | Supervision | Feature | Encoder-based | AUC(%) | FAR@0.5 (%) | | ------------------------------------------------- | ------------------------------ | ----------------------------- | ------------------ | ------- | ------ | ----------- | | [Conv-AE](#01601) | CVPR 16 | Un | - | √ | 60.85 | - | | [stacked-RNN](#01702) | ICCV 17 | Un | - | √ | 68.0 | - | | [FramePred](#01801) | CVPR 18 | Un | - | √ | 72.8 | - | | [FramePred*](#11902) | IJCAI 19 | Un | - | √ | 73.4 | - | | [Mem-AE](#01901) | ICCV 19 | Un | - | √ | 71.2 | - | | [MNAD](#02005) | CVPR 20 | Un | - | √ | 70.5 | - | | [VEC](#02011) | ACM MM 20 | Un | - | √ | 74.8 | - | | [ST-Graph](#02014) | ACM MM 20 | Un | - | √ | 74.7 | - | | [CAC](#02013) | ACM MM 20 | Un | - | √ | 79.3 | | | [AMMC](#02101) | AAAI 21 | Un | - | √ | 73.7 | - | | [SSMT](#02102) | CVPR 21 | Un | - | √ | 90.2 | - | | [HF2-VAD](#02103) | ICCV 21 | Un | - | √ | 76.2 | - | | [ROADMAP](#02104) | TNNLS 21 | Un | - | √ | 76.6 | - | | [MLEP](#11902) | IJCAI 19 | 10% test vids with Video Anno | - | √ | 75.6 | - | | [MLEP](#11902) | IJCAI 19 | 10% test vids with Frame Anno | - | √ | 76.8 | - | | [Sultani.etl](#12002) | ICME 2020 | Weakly (Re-Organized Dataset) | C3D-RGB | X | 86.3 | 0.15 | | [IBL](#12002) | ICME 2020 | Weakly (Re-Organized Dataset) | I3D-RGB | X | 82.5 | 0.10 | | [GCN-Anomaly](#11901) | CVPR 19 | Weakly (Re-Organized Dataset) | C3D-RGB | √ | 76.44 | - | | [GCN-Anomaly](#11901) | CVPR 19 | Weakly (Re-Organized Dataset) | TSN-Flow | √ | 84.13 | - | | [GCN-Anomaly](#11901) | CVPR 19 | Weakly (Re-Organized Dataset) | TSN-RGB | √ | 84.44 | - | | [AR-Net](#12002) | ICME 20 | Weakly (Re-Organized Dataset) | I3D-RGB & I3D Flow | X | 91.24 | 0.10 | | [CLAWS](#12004) | ECCV 20 | Weakly (Re-Organized Dataset) | C3D-RGB | √ | 89.67 | | | [MIST](#12101) | CVPR 21 | Weakly (Re-Organized Dataset) | I3D-RGB | √ | 94.83 | 0.05 | | [RTFM](#12102) | ICCV 21 | Weakly (Re-Organized Dataset) | I3D-RGB | X | 97.21 | - | | [CRFD](#12105) | TIP 21 | Weakly (Re-Organized Dataset) | I3D-RGB | X | 97.48 | - | ## Performance Comparison on Avenue | Model | Reported on Conference/Journal | Supervision | Feature | End2End | AUC(%) | | ------------------------------------------------------------ | ------------------------------ | ----------------------------- | ---------------------- | ------- | ------ | | [Conv-AE](#01601) | CVPR 16 | Un | - | √ | 70.2 | | [Conv-AE*](#01801) | CVPR 18 | Un | - | √ | 80.0 | | [ConvLSTM-AE](#01703) | ICME 17 | Un | - | √ | 77.0 | | [DeepAppearance](#01706) | ICAIP 17 | Un | - | √ | 84.6 | | [Unmasking](#01705) | ICCV 17 | Un | 3D gradients+VGG conv5 | X | 80.6 | | [stacked-RNN](#01702) | ICCV 17 | Un | - | √ | 81.7 | | [FramePred](#01801) | CVPR 18 | Un | - | √ | 85.1 | | [Mem-AE](#01901) | ICCV 19 | Un | - | √ | 83.3 | | [Appearance-Motion Correspondence](#01904) | ICCV 19 | Un | - | √ | 86.9 | | [FramePred*](#11902) | IJCAI 19 | Un | - | √ | 89.2 | | [MNAD](#02005) | CVPR 20 | Un | - | √ | 88.5 | | [VEC](#02011) | ACM MM 20 | Un | - | √ | 90.2 | | [ST-Graph](#02014) | ACM MM 20 | Un | - | √ | 89.6 | | [CAC](#02013) | ACM MM 20 | Un | - | √ | 87.0 | | [AMMC](#02101) | AAAI 21 | Un | - | √ | 86.6 | | [SSMT](#02102) | CVPR 21 | Un | - | √ | 92.8 | | [HF2-VAD](#02103) | ICCV 21 | Un | - | √ | 91.1 | | [ROADMAP](#02104) | TNNLS 21 | Un | - | √ | 88.3 | | [AEP](#02105) | TNNLS 21 | Un | - | √ | 90.2 | | [MLEP](#11902) | IJCAI 19 | 10% test vids with Video Anno | - | √ | 91.3 | | [MLEP](#11902) | IJCAI 19 | 10% test vids with Frame Anno | - | √ | 92.8 | ## Performance Comparison on XD-Violence | Model | Reported on Conference/Journal | Supervision | Feature | Encoder-based | 32 Segments | AP(%) | | ----------------------------------------------------- | ------------------------------ | ------------------------ | ------------------- | ------- |-------------| ------ | | [Sultani et al.](#11801) | ECCV 2020 (reported by Wu) | Weakly | I3D-RGB | X | √ | 73.20 | | [Wu et al.](#12003) | ECCV 2020 | Weakly | C3D-RGB | X | X | 67.19 | | [Wu et al.](#12003) | ECCV 2020 | Weakly | I3D-RGB+Audio | X | X | 78.64 | | [RTFM](#12102) | ICCV 2021 | Weakly | I3D-RGB | X | √ | 77.81 | | [CRFD](#12105) | TIP 2021 | Weakly | I3D-RGB | X | √ | 75.90 |