# dense_flow **Repository Path**: luca_guo/dense_flow ## Basic Information - **Project Name**: dense_flow - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-02 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Extracting dense flow field given a video. #### Dependencies: - LibZip: to install on ubuntu ```apt-get install libzip-dev``` on mac ```brew install libzip``` #### For OpenCV 3 Users Please see the [opencv-3.1](https://github.com/yjxiong/dense_flow/tree/opencv-3.1) branch. Many thanks to @victorhcm for the contributions! ### Install ``` git clone --recursive http://github.com/yjxiong/dense_flow mkdir build && cd build cmake .. && make -j ``` ### Usage ``` ./extract_gpu -f=test.avi -x=tmp/flow_x -y=tmp/flow_y -i=tmp/image -b=20 -t=1 -d=0 -s=1 -o=dir ``` - `test.avi`: input video - `tmp`: folder containing RGB images and optical flow images - `dir`: output generated images to folder. if set to `zip`, will write images to zip files instead. ### Warp Flow The warp optical flow is used in the following paper ``` @inproceedings{TSN2016ECCV, author = {Limin Wang and Yuanjun Xiong and Zhe Wang and Yu Qiao and Dahua Lin and Xiaoou Tang and Luc {Van Gool}}, title = {Temporal Segment Networks: Towards Good Practices for Deep Action Recognition}, booktitle = {ECCV}, year = {2016}, } ``` To extract warp flow, use the command ``` ./extract_warp_gpu -f test.avi -x tmp/flow_x -y tmp/flow_y -i tmp/image -b 20 -t 1 -d 0 -s 1 -o dir ```