# iterdet **Repository Path**: luca_guo/iterdet ## Basic Information - **Project Name**: iterdet - **Description**: No description available - **Primary Language**: Unknown - **License**: MPL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-25 - **Last Updated**: 2021-01-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/iterdet-iterative-scheme-for-objectdetection/object-detection-on-crowdhuman-full-body)](https://paperswithcode.com/sota/object-detection-on-crowdhuman-full-body?p=iterdet-iterative-scheme-for-objectdetection) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/iterdet-iterative-scheme-for-objectdetection/object-detection-on-widerperson)](https://paperswithcode.com/sota/object-detection-on-widerperson?p=iterdet-iterative-scheme-for-objectdetection) # IterDet: Iterative Scheme for Object Detection in Crowded Environments This project hosts the code for implementing the IterDet scheme for object detection, as presented in our paper: > **IterDet: Iterative Scheme for Object Detection in Crowded Environments**
> [Danila Rukhovich](https://github.com/filaPro), > [Konstantin Sofiiuk](https://github.com/ksofiyuk), > [Danil Galeev](https://github.com/denemmy), > [Olga Barinova](https://github.com/OlgaBarinova), > [Anton Konushin](https://scholar.google.com/citations?user=ZT_k-wMAAAAJ) >
> Samsung AI Center Moscow
> https://arxiv.org/abs/2005.05708

drawing

### Installation This implementation is based on [mmdetection](https://github.com/open-mmlab/mmdetection) framework.
All our modifications against their `v2.0.0` release are listed below: * configs/iterative/* * demo/iterative/* * mmdet/datasets/\_\_init\_\_.py * mmdet/datasets/pipelines/transforms.py * mmdet/datasets/pipelines/formating.py * mmdet/datasets/crowd_human.py * mmdet/models/dense_heads/anchor_head.py * mmdet/models/dense_heads/rpn_head.py * mmdet/models/roi_heads/bbox_heads/bbox_head.py * mmdet/models/backbones/resnet.py * mmdet/models/detectors/\_\_init\_\_.py * mmdet/models/detectors/iterdet_faster_rcnn.py * mmdet/models/detectors/iderdet_retinanet.py * tools/convert_datasets/crowd_human.py * tools/convert_datasets/toy.py * tools/convert_datasets/wider_person.py * requirements/runtime.txt * docker/Dockerfile
Please refer to original [install.md](docs/install.md) for installation. Do not forget to update the original github repository link, and install [requirements.txt](requirements.txt). For `v1.2.0` release follow `v1` branch. [Config](configs/iterdet) files and [tools](tools/convert_datasets) for converting annotations to COCO format are provided for the following datasets: * AdaptIS [ToyV1](https://github.com/saic-vul/adaptis#toyv1-dataset) and [ToyV2](https://github.com/saic-vul/adaptis#toyv2-dataset) * [CrowdHuman](https://www.crowdhuman.org/) * [WiderPerson](http://www.cbsr.ia.ac.cn/users/sfzhang/WiderPerson/) ### Get Started Please see original [getting_started.md](docs/getting_started.md) for the basic usage examples. Iterdet [configs](configs/iterdet) can be used for [train](tools/dist_train.sh) and [test](tools/dist_test.sh) scripts: ```shell script bash tools/dist_train.sh configs/iterdet/crowd_human_full_faster_rcnn_r50_fpn_2x.py 8 --validate bash tools/dist_test.sh configs/iterdet/crowd_human_full_faster_rcnn_r50_fpn_2x.py \ work_dirs/iterdet/crowd_human_full_faster_rcnn_r50_fpn_2x/latest.pth 8 ``` ### Models State-of-the-art models for all datasets are trained on top of Faster RCNN based on ResNet-50. Metrics are given for 2 iterations IterDet inference. | Dataset | Download Link | Recall | AP | mMR | |:--------------------:|:----------------------------------------------:|:------:|:-----:|:-----:| | AdaptIS Toy V1 | [toy_v1.pth][toy_v1] | 99.60 | 99.25 | | | AdaptIS Toy V2 | [toy_v2.pth][toy_v2] | 99.29 | 99.00 | | | CrowdHuman (full) | [crowd_human_full.pth][crowd_human_full] | 95.80 | 88.08 | 49.44 | | CrowdHuman (visible) | [crowd_human_visible.pth][crowd_human_visible] | 91.63 | 85.33 | 55.61 | | WiderPerson | [wider_person.pth][wider_person] | 97.15 | 91.95 | 40.78 | [toy_v1]: https://github.com/saic-vul/iterdet/releases/download/v2.0.0/toy_v1_faster_rcnn_r50_fpn_2x.pth [toy_v2]: https://github.com/saic-vul/iterdet/releases/download/v2.0.0/toy_v2_faster_rcnn_r50_fpn_2x.pth [crowd_human_full]: https://github.com/saic-vul/iterdet/releases/download/v2.0.0/crowd_human_full_faster_rcnn_r50_fpn_2x.pth [crowd_human_visible]: https://github.com/saic-vul/iterdet/releases/download/v2.0.0/crowd_human_visible_faster_rcnn_r50_fpn_2x.pth [wider_person]: https://github.com/saic-vul/iterdet/releases/download/v2.0.0/wider_person_faster_rcnn_r50_fpn_2x.pth ### Example Detections

drawing

Examples of IterDet results on ToyV1, ToyV2, CrowdHuman (with full body annotataions), and WiderPerson. The boxes found on the first and second iterations are marked in green and yellow respectively. ### License The code is released under the MPL 2.0 License. MPL is a copyleft license that is easy to comply with. You must make the source code for any of your changes available under MPL, but you can combine the MPL software with proprietary code, as long as you keep the MPL code in separate files. ### Citation If you find this work useful for your research, please cite our paper: ``` @article{rukhovich2020iterdet, title={IterDet: Iterative Scheme for Object Detection in Crowded Environments}, author={Danila Rukhovich, Konstantin Sofiiuk, Danil Galeev, Olga Barinova, Anton Konushin}, journal={arXiv preprint arXiv:2005.05708}, year={2020} } ```