登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
Gitee 2025 年度开源项目评选中
代码拉取完成,页面将自动刷新
开源项目
>
人工智能
>
推理框架
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
66
Star
162
Fork
147
MindSpore
/
vllm-mindspore
代码
Issues
52
Pull Requests
123
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
Qwen3-Next-80B-A3B-Instruct模型服务 ValueError: The number of actual input tensors: 17 is not equal to the number of dynamic shape tensors: 16.
TODO
#ICY2PR
Documentation
Wk.xpp
创建于
2025-09-15 17:19
+ export vLLM_MODEL_BACKEND=MindFormers + vLLM_MODEL_BACKEND=MindFormers + export MS_ENABLE_TRACE_MEMORY=off + MS_ENABLE_TRACE_MEMORY=off + python3 -m vllm_mindspore.entrypoints vllm.entrypoints.openai.api_server --model /model --trust_remote_code --tensor_parallel_size=8 --max-num-seqs=192 --max_model_len=32768 --max-num-batched-tokens=16384 --block-size=32 --gpu-memory-utilization=0.9 None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:13 [importing.py:17] Triton not installed or not compatible; certain GPU-related functions will not be available. WARNING 09-15 07:29:13 [importing.py:29] Triton is not installed. Using dummy decorators. Install it via `pip install triton` to enable kernel compilation. warn( None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:14 [__init__.py:248] No platform detected, vLLM is running on UnspecifiedPlatform WARNING 09-15 07:29:16 [_custom_ops.py:22] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") INFO 09-15 07:29:18 vllm-mindspore[logger.py:75] The config of vllm-mindspore logger has been updated successfully. INFO 09-15 07:29:18 vllm-mindspore[utils.py:195] environment variable "vLLM_MODEL_BACKEND" is MindFormers WARNING 09-15 07:29:18 vllm-mindspore[utils.py:198] "vLLM_MODEL_BACKEND" will be removed, please use "VLLM_MS_MODEL_BACKEND" INFO 09-15 07:29:18 vllm-mindspore[utils.py:201] environment variable "VLLM_MS_MODEL_BACKEND" is None INFO:datasets:Disabling PyTorch because USE_TF is set INFO:datasets:Disabling Tensorflow because USE_TORCH is set WARNING 09-15 07:29:20 vllm-mindspore[registry.py:51] Error when importing MindSpore ONE: No module named 'mindone' INFO 09-15 07:29:20 vllm-mindspore[utils.py:322] Run with Mindformers backend! 2025-09-15 07:29:21,594 - mindformers/home/work/easyedge/llm/output/log[/usr/lib/python3.10/warnings.py:109] - WARNING - RuntimeWarning: 'vllm_mindspore.entrypoints.__main__' found in sys.modules after import of package 'vllm_mindspore.entrypoints', but prior to execution of 'vllm_mindspore.entrypoints.__main__'; this may result in unpredictable behaviour WARNING 09-15 07:29:27 [env_override.py:17] NCCL_CUMEM_ENABLE is set to 0, skipping override. This may increase memory overhead with cudagraph+allreduce: https://github.com/NVIDIA/nccl/issues/1234 None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:28 [importing.py:17] Triton not installed or not compatible; certain GPU-related functions will not be available. WARNING 09-15 07:29:28 [importing.py:29] Triton is not installed. Using dummy decorators. Install it via `pip install triton` to enable kernel compilation. /usr/local/lib/python3.10/dist-packages/torchvision/io/image.py:14: UserWarning: Failed to load image Python extension: 'not support import any ops for now.'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source? return self._float_to_str(self.smallest_subnormal) WARNING 09-15 07:30:00 vllm-mindspore[config.py:262] Casting bfloat16 to BFloat16. INFO 09-15 07:30:00 [config.py:1946] Defaulting to use mp for distributed inference INFO 09-15 07:30:00 [config.py:1980] Disabled the custom all-reduce kernel because it is not supported on current platform. INFO 09-15 07:30:00 [config.py:2195] Chunked prefill is enabled with max_num_batched_tokens=16384. INFO 09-15 07:30:01 [core.py:455] Waiting for init message from front-end. INFO 09-15 07:30:01 [core.py:70] Initializing a V1 LLM engine (v0.9.2.dev0+gb6553be1b.d20250715) with config: model='/model', speculative_config=None, tokenizer='/model', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=True, dtype=BFloat16, max_seq_len=32768, download_dir=None, load_format=auto, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=True, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/model, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":1,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":["none"],"splitting_ops":[],"use_inductor":true,"compile_sizes":[20],"inductor_compile_config":{},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":512,"local_cache_dir":null} INFO 09-15 07:30:01 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast INFO 09-15 07:30:01 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1, 2, 3, 4, 5, 6, 7], buffer_handle=(8, 16777216, 10, 'psm_0a2e8213'), local_subscribe_addr='ipc:///tmp/edc446eb-ecd0-4605-adff-809d9e1652ae', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1072 in rank 1 to cpu: [180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191] WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208c10> (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_3320abdf'), local_subscribe_addr='ipc:///tmp/057e47c0-60ed-4c4a-9509-cdd5aab547fc', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1069 in rank 0 to cpu: [168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179] INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1075 in rank 2 to cpu: [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131] WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208af0> (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f20bcd0> (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_c53a845c'), local_subscribe_addr='ipc:///tmp/527d32b7-f625-419e-8c0a-67bcec63eeed', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_2dd7d633'), local_subscribe_addr='ipc:///tmp/2cd29b69-1f1a-4f52-9712-9abd90c891e4', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1078 in rank 3 to cpu: [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143] INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1084 in rank 5 to cpu: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f20bee0> (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_79f7bfd7'), local_subscribe_addr='ipc:///tmp/a91816c2-3d1c-4f9f-a0f0-ecda7f7feef6', remote_subscribe_addr=None, remote_addr_ipv6=False) WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208130> (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_b1f7503e'), local_subscribe_addr='ipc:///tmp/da945510-a81c-464d-b183-836c2b610d73', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1087 in rank 6 to cpu: [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f2091e0> (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_d79289ac'), local_subscribe_addr='ipc:///tmp/e9003014-cfb9-4786-bc33-255ae1a886cb', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1090 in rank 7 to cpu: [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f2093f0> (VllmWorker rank=7 pid=1090) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_afef9fd9'), local_subscribe_addr='ipc:///tmp/3b9c0a4d-8413-432b-8bea-d15f5d7bb898', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1081 in rank 4 to cpu: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208460> (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_f7a8f872'), local_subscribe_addr='ipc:///tmp/b9944f44-2e0c-4bd0-9493-759a79987cea', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:41 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3, 4, 5, 6, 7], buffer_handle=(7, 4194304, 6, 'psm_7cdf1ca7'), local_subscribe_addr='ipc:///tmp/649ecf4a-947a-4849-a8b2-7f3ecfcd8b66', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:41 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 6 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 6, EP rank 6 (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 1 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1 (VllmWorker rank=7 pid=1090) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 7 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 7, EP rank 7 (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 0 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0 (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 2 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 2, EP rank 2 (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 3 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 3, EP rank 3 (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 5 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 5, EP rank 5 (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 4 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 4, EP rank 4 (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:42 vllm-mindspore[config.py:356] The generated MindFormers config: {'run_mode': 'predict', 'use_legacy': False, 'load_ckpt_format': 'safetensors', 'auto_trans_ckpt': True, 'parallel_mode': 'STAND_ALONE', 'parallel_config': {'model_parallel': 8, 'pipeline_stage': 1, 'data_parallel': 1, 'vocab_emb_dp': False}, 'model': {'model_config': {'compute_dtype': mindspore.bfloat16, 'max_position_embeddings': 32768, 'block_size': 32, 'layernorm_compute_dtype': 'bfloat16', 'rotary_dtype': 'bfloat16', 'params_dtype': 'bfloat16', 'router_dense_type': 'bfloat16', 'pre_process': True, 'post_process': True, 'offset': 0}}} (VllmWorker rank=4 pid=1081) {'parallel_config': None, 'pet_config': None, 'context_parallel_algo': 'colossalai_cp', 'is_dynamic': False, 'compute_dtype': mindspore.bfloat16, 'layernorm_compute_dtype': mindspore.bfloat16, 'rotary_dtype': mindspore.bfloat16, 'rotary_cos_format': 'rotate_half', 'bias_swiglu_fusion': False, 'mla_qkv_concat': True, 'use_contiguous_weight_layout_attention': False, 'use_interleaved_weight_layout_mlp': True, 'normalization': 'RMSNorm', 'fused_norm': True, 'add_bias_linear': False, 'add_mlp_fc1_bias_linear': None, 'add_mlp_fc2_bias_linear': None, 'gated_linear_unit': True, 'use_flash_attention': True, 'attention_pre_tokens': None, 'attention_next_tokens': None, 'query_chunk': True, 'rotary_seq_len_interpolation_factor': None, 'rope_scaling': None, 'use_rope_scaling': False, 'input_layout': 'BNSD', 'sparse_mode': 0, 'use_alibi_mask': False, 'use_attn_mask_compression': False, 'use_eod_attn_mask_compression': False, 'use_attention_mask': True, 'use_ring_attention': False, 'fp16_lm_cross_entropy': False, 'untie_embeddings_and_output_weights': True, 'hidden_act': 'silu', 'mask_func_type': 'attn_mask_fill', 'comp_comm_parallel': False, 'comp_comm_parallel_degree': 2, 'norm_topk_prob': True, 'use_fused_ops_topkrouter': False, 'use_shared_expert_gating': False, 'topk_method': 'greedy', 'npu_nums_per_device': 8, 'use_pad_tokens': True, 'callback_moe_droprate': False, 'moe_init_method_std': 0.01, 'first_k_dense_replace': None, 'moe_router_enable_expert_bias': False, 'moe_router_force_expert_balance': False, 'moe_router_score_function': 'softmax', 'moe_router_fusion': False, 'moe_shared_expert_gated': True, 'use_eod_reset': False, 'hidden_dropout': 0.0, 'residual_dtype': None, 'print_separate_loss': True, 'vocab_size': 151936, 'seq_length': 4096, 'pad_token_id': 0, 'ignore_token_id': -100, 'max_position_embeddings': 32768, 'sandwich_norm': False, 'tie_word_embeddings': False, 'block_size': 32, 'num_blocks': 1024, 'parallel_decoding_params': None, 'pre_process': True, 'post_process': True, 'dispatch_global_max_bs': 0, 'attn_reduce_scatter': False, 'attn_allgather': False, 'attn_allreduce': True, 'ffn_reduce_scatter': False, 'ffn_allgather': False, 'ffn_allreduce': True, 'use_alltoall': False, 'use_fused_mla': False, 'quantization_config': None, 'disable_lazy_inline': False, 'data_parallel_size': 1, 'tensor_model_parallel_size': 8, 'pipeline_model_parallel_size': 1, 'virtual_pipeline_model_parallel_size': None, 'sequence_parallel': False, 'context_parallel_size': 1, 'hierarchical_context_parallel_sizes': 1, 'expert_model_parallel_size': 1, 'expert_tensor_parallel_size': None, 'micro_batch_num': 1, 'seq_split_num': 1, 'gradient_aggregation_group': 4, 'offset': 0, 'ulysses_degree_in_cp': 1, 'vocab_emb_dp': False, 'fp16': False, 'bf16': False, 'params_dtype': mindspore.bfloat16, 'finalize_model_grads_func': None, 'grad_scale_func': None, 'grad_sync_func': None, 'param_sync_func': None, 'num_microbatches_with_partial_activation_checkpoints': None, 'cpu_offloading': False, 'cpu_offloading_num_layers': None, 'cpu_offloading_weights': False, 'op_swap': None, 'default_prefetch': 1, 'num_layers': 48, 'mtp_num_layers': 0, 'mtp_loss_scaling_factor': None, 'hidden_size': 2048, 'num_attention_heads': 16, 'softmax_scale': None, 'num_query_groups': 2, 'ffn_hidden_size': 5120, 'kv_channels': 256, 'attention_dropout': 0.0, 'fp32_residual_connection': False, 'apply_residual_connection_post_layernorm': False, 'layernorm_epsilon': 1e-06, 'layernorm_zero_centered_gamma': False, 'add_qkv_bias': False, 'activation_func': 'gelu', 'num_moe_experts': 512, 'rotary_interleaved': False, 'calculate_per_token_loss': False, 'multi_latent_attention': False, 'position_embedding_type': 'rope', 'rotary_base': 10000000, 'partial_rotary_factor': 0.25, 'qk_layernorm': False, 'linear_conv_kernel_dim': 4, 'linear_expand_v': 0, 'linear_key_head_dim': 128, 'linear_num_key_heads': 16, 'linear_num_value_heads': 32, 'linear_value_head_dim': 128, 'full_attention_interval': 4, 'init_method': <function init_method_normal.<locals>.init_ at 0xfffef038c0d0>, 'output_layer_init_method': <function scaled_init_method_normal.<locals>.init_ at 0xfffef038c160>, 'init_method_std': 0.02, 'init_model_with_meta_device': False, 'apply_query_key_layer_scaling': False, 'attention_softmax_in_fp32': True, 'softmax_compute_dtype': mindspore.float32, 'disable_bf16_reduced_precision_matmul': False, 'bias_activation_fusion': False, 'masked_softmax_fusion': False, 'persist_layer_norm': False, 'memory_efficient_layer_norm': False, 'bias_dropout_fusion': False, 'apply_rope_fusion': False, 'recompute': False, 'select_recompute': False, 'parallel_optimizer_comm_recompute': False, 'select_comm_recompute': False, 'mp_comm_recompute': True, 'recompute_slice_activation': False, 'select_recompute_exclude': False, 'select_comm_recompute_exclude': False, 'moe_shared_expert_intermediate_size': 512, 'moe_shared_expert_overlap': False, 'moe_layer_freq': 1, 'moe_ffn_hidden_size': 512, 'moe_router_load_balancing_type': 'aux_loss', 'moe_router_topk': 10, 'moe_router_num_groups': None, 'moe_router_group_topk': None, 'moe_router_pre_softmax': False, 'moe_router_topk_scaling_factor': None, 'moe_router_dtype': mindspore.bfloat16, 'moe_router_bias_update_rate': 0.001, 'moe_grouped_gemm': False, 'moe_aux_loss_coeff': 0.0, 'moe_z_loss_coeff': None, 'moe_input_jitter_eps': None, 'group_wise_a2a': False, 'moe_token_dispatcher_type': 'alltoall', 'moe_enable_deepep': False, 'moe_per_layer_logging': False, 'moe_expert_capacity_factor': None, 'moe_pad_expert_input_to_capacity': False, 'moe_token_drop_policy': 'probs', 'moe_permute_fusion': False, 'moe_apply_probs_on_input': False, 'shared_expert_num': 1, 'enable_expert_relocation': False, 'expert_relocation_initial_iteration': 20, 'expert_relocation_freq': 50, 'print_expert_load': False, 'cp_comm_type': 'all_gather'} (VllmWorker rank=1 pid=1072) 2025-09-15 07:30:47,508 - mindformers/home/work/easyedge/llm/output/log[mindformers/models/model_config_utils.py:165] - WARNING - | use_sliding_window | Useless | 。。。。 go': 'colossalai_cp', 'is_dynamic': False, 'compute_dtype': mindspore.bfloat16, 'layernorm_compute_dtype': mindspore.bfloat16, 'rotary_dtype': mindspore.bfloat16, 'rotary_cos_format': 'rotate_half', 'bias_swiglu_fusion': False, 'mla_qkv_concat': True, 'use_contiguous_weight_layout_attention': False, 'use_interleaved_weight_layout_mlp': True, 'normalization': 'RMSNorm', 'fused_norm': True, 'add_bias_linear': False, 'add_mlp_fc1_bias_linear': None, 'add_mlp_fc2_bias_linear': None, 'gated_linear_unit': True, 'use_flash_attention': True, 'attention_pre_tokens': None, 'attention_next_tokens': None, 'query_chunk': True, 'rotary_seq_len_interpolation_factor': None, 'rope_scaling': None, 'use_rope_scaling': False, 'input_layout': 'BNSD', 'sparse_mode': 0, 'use_alibi_mask': False, 'use_attn_mask_compression': False, 'use_eod_attn_mask_compression': False, 'use_attention_mask': True, 'use_ring_attention': False, 'fp16_lm_cross_entropy': False, 'untie_embeddings_and_output_weights': True, 'hidden_act': 'silu', 'mask_func_type': 'attn_mask_fill', 'comp_comm_parallel': False, 'comp_comm_parallel_degree': 2, 'norm_topk_prob': True, 'use_fused_ops_topkrouter': False, 'use_shared_expert_gating': False, 'topk_method': 'greedy', 'npu_nums_per_device': 8, 'use_pad_tokens': True, 'callback_moe_droprate': False, 'moe_init_method_std': 0.01, 'first_k_dense_replace': None, 'moe_router_enable_expert_bias': False, 'moe_router_force_expert_balance': False, 'moe_router_score_function': 'softmax', 'moe_router_fusion': False, 'moe_shared_expert_gated': True, 'use_eod_reset': False, 'hidden_dropout': 0.0, 'residual_dtype': None, 'print_separate_loss': True, 'vocab_size': 151936, 'seq_length': 4096, 'pad_token_id': 0, 'ignore_token_id': -100, 'max_position_embeddings': 32768, 'sandwich_norm': False, 'tie_word_embeddings': False, 'block_size': 32, 'num_blocks': 1024, 'parallel_decoding_params': None, 'pre_process': True, 'post_process': True, 'dispatch_global_max_bs': 0, 'attn_reduce_scatter': False, 'attn_allgather': False, 'attn_allreduce': True, 'ffn_reduce_scatter': False, 'ffn_allgather': False, 'ffn_allreduce': True, 'use_alltoall': False, 'use_fused_mla': False, 'quantization_config': None, 'disable_lazy_inline': False, 'data_parallel_size': 1, 'tensor_model_parallel_size': 8, 'pipeline_model_parallel_size': 1, 'virtual_pipeline_model_parallel_size': None, 'sequence_parallel': False, 'context_parallel_size': 1, 'hierarchical_context_parallel_sizes': 1, 'expert_model_parallel_size': 1, 'expert_tensor_parallel_size': None, 'micro_batch_num': 1, 'seq_split_num': 1, 'gradient_aggregation_group': 4, 'offset': 0, 'ulysses_degree_in_cp': 1, 'vocab_emb_dp': False, 'fp16': False, 'bf16': False, 'params_dtype': mindspore.bfloat16, 'finalize_model_grads_func': None, 'grad_scale_func': None, 'grad_sync_func': None, 'param_sync_func': None, 'num_microbatches_with_partial_activation_checkpoints': None, 'cpu_offloading': False, 'cpu_offloading_num_layers': None, 'cpu_offloading_weights': False, 'op_swap': None, 'default_prefetch': 1, 'num_layers': 48, 'mtp_num_layers': 0, 'mtp_loss_scaling_factor': None, 'hidden_size': 2048, 'num_attention_heads': 16, 'softmax_scale': None, 'num_query_groups': 2, 'ffn_hidden_size': 5120, 'kv_channels': 256, 'attention_dropout': 0.0, 'fp32_residual_connection': False, 'apply_residual_connection_post_layernorm': False, 'layernorm_epsilon': 1e-06, 'layernorm_zero_centered_gamma': False, 'add_qkv_bias': False, 'activation_func': 'gelu', 'num_moe_experts': 512, 'rotary_interleaved': False, 'calculate_per_token_loss': False, 'multi_latent_attention': False, 'position_embedding_type': 'rope', 'rotary_base': 10000000, 'partial_rotary_factor': 0.25, 'qk_layernorm': False, 'linear_conv_kernel_dim': 4, 'linear_expand_v': 0, 'linear_key_head_dim': 128, 'linear_num_key_heads': 16, 'linear_num_value_heads': 32, 'linear_value_head_dim': 128, 'full_attention_interval': 4, 'init_method': <function init_method_normal.<locals>.init_ at 0xfffef038c0d0>, 'output_layer_init_method': <function scaled_init_method_normal.<locals>.init_ at 0xfffef038c160>, 'init_method_std': 0.02, 'init_model_with_meta_device': False, 'apply_query_key_layer_scaling': False, 'attention_softmax_in_fp32': True, 'softmax_compute_dtype': mindspore.float32, 'disable_bf16_reduced_precision_matmul': False, 'bias_activation_fusion': False, 'masked_softmax_fusion': False, 'persist_layer_norm': False, 'memory_efficient_layer_norm': False, 'bias_dropout_fusion': False, 'apply_rope_fusion': False, 'recompute': False, 'select_recompute': False, 'parallel_optimizer_comm_recompute': False, 'select_comm_recompute': False, 'mp_comm_recompute': True, 'recompute_slice_activation': False, 'select_recompute_exclude': False, 'select_comm_recompute_exclude': False, 'moe_shared_expert_intermediate_size': 512, 'moe_shared_expert_overlap': False, 'moe_layer_freq': 1, 'moe_ffn_hidden_size': 512, 'moe_router_load_balancing_type': 'aux_loss', 'moe_router_topk': 10, 'moe_router_num_groups': None, 'moe_router_group_topk': None, 'moe_router_pre_softmax': False, 'moe_router_topk_scaling_factor': None, 'moe_router_dtype': mindspore.bfloat16, 'moe_router_bias_update_rate': 0.001, 'moe_grouped_gemm': False, 'moe_aux_loss_coeff': 0.0, 'moe_z_loss_coeff': None, 'moe_input_jitter_eps': None, 'group_wise_a2a': False, 'moe_token_dispatcher_type': 'alltoall', 'moe_enable_deepep': False, 'moe_per_layer_logging': False, 'moe_expert_capacity_factor': None, 'moe_pad_expert_input_to_capacity': False, 'moe_token_drop_policy': 'probs', 'moe_permute_fusion': False, 'moe_apply_probs_on_input': False, 'shared_expert_num': 1, 'enable_expert_relocation': False, 'expert_relocation_initial_iteration': 20, 'expert_relocation_freq': 50, 'print_expert_load': False, 'cp_comm_type': 'all_gather'} INFO 09-15 07:35:49 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast Loading safetensors checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████| 41/41 [03:05<00:00, 4.54s/it] (VllmWorker rank=1 pid=1072) 2025-09-15 07:36:30,371 - mindformers/home/work/easyedge/llm/output/log[mindformers/parallel_core/inference/base_models/gpt/gpt_model.py:473] - WARNING - These parameters are not loaded in the network: set() (VllmWorker rank=1 pid=1072) INFO 09-15 07:36:30 [default_loader.py:272] Loading weights took 3971725.01 seconds (VllmWorker rank=1 pid=1072) INFO 09-15 07:36:31 [gpu_model_runner.py:1624] Model loading took 36.8734 GiB and 348.161880 seconds INFO 09-15 07:36:31 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] WorkerProc hit an exception. (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] WorkerProc hit an exception. (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] Traceback (most recent call last): (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/multiproc_executor.py", line 522, in worker_busy_loop (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] Traceback (most recent call last): (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/multiproc_executor.py", line 522, in worker_busy_loop (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 205, in determine_available_memory (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] self.model_runner.profile_run() (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 205, in determine_available_memory (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 2012, in profile_run (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] self.model_runner.profile_run() (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self._dummy_run(self.max_num_tokens) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 2012, in profile_run (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self._dummy_run(self.max_num_tokens) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 1847, in _dummy_run (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] outputs = model( (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 1847, in _dummy_run (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/model_base.py", line 244, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] outputs = model( (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self.forward(input_ids, (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/model_base.py", line 244, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/mf_models/mindformers.py", line 376, in forward (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self.forward(input_ids, (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self.network(**model_inputs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/mf_models/mindformers.py", line 376, in forward (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1373, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self.network(**model_inputs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._complex_call(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1373, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1383, in _complex_call (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._complex_call(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = self.construct(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1383, in _complex_call (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindformers/models/utils.py", line 167, in decorator (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = self.construct(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return ms.jit(func, jit_level='O0', infer_boost='on')(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindformers/models/utils.py", line 167, in decorator (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 1117, in staging_specialize (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return ms.jit(func, jit_level='O0', infer_boost='on')(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] out = jit_executor(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 1117, in staging_specialize (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 187, in wrapper (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] out = jit_executor(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] results = fn(*arg, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 187, in wrapper (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 656, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] results = fn(*arg, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict, res = self._predict(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 656, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 639, in _predict (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict, res = self._predict(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise err (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 639, in _predict (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 636, in _predict (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise err (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict_phase = self.compile(self.fn.__name__, *args_list, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 636, in _predict (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 693, in compile (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict_phase = self.compile(self.fn.__name__, *args_list, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] compile_args = self._generate_compile_args(args) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 693, in compile (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 891, in _generate_compile_args (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] compile_args = self._generate_compile_args(args) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._generate_compile_args_by_set_inputs(args_list) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 891, in _generate_compile_args (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 848, in _generate_compile_args_by_set_inputs (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._generate_compile_args_by_set_inputs(args_list) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise ValueError(f"The number of actual input tensors: {len(args_list)} is not equal to the number of " (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 848, in _generate_compile_args_by_set_inputs (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] ValueError: The number of actual input tensors: 17 is not equal to the number of dynamic shape tensors: 16. (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise ValueError(f"The number of actual input tensors: {len(args_list)} is not equal to the number of " (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] ValueError: The number of actual input tensors: 17 is not equal to the number of dynamic shape tensors: 16. (VllmWorker rank=1 pid=1072) ERROR 09-15 07:36:31 [multiproc_executor.py:527]
+ export vLLM_MODEL_BACKEND=MindFormers + vLLM_MODEL_BACKEND=MindFormers + export MS_ENABLE_TRACE_MEMORY=off + MS_ENABLE_TRACE_MEMORY=off + python3 -m vllm_mindspore.entrypoints vllm.entrypoints.openai.api_server --model /model --trust_remote_code --tensor_parallel_size=8 --max-num-seqs=192 --max_model_len=32768 --max-num-batched-tokens=16384 --block-size=32 --gpu-memory-utilization=0.9 None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:13 [importing.py:17] Triton not installed or not compatible; certain GPU-related functions will not be available. WARNING 09-15 07:29:13 [importing.py:29] Triton is not installed. Using dummy decorators. Install it via `pip install triton` to enable kernel compilation. warn( None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:14 [__init__.py:248] No platform detected, vLLM is running on UnspecifiedPlatform WARNING 09-15 07:29:16 [_custom_ops.py:22] Failed to import from vllm._C with ModuleNotFoundError("No module named 'vllm._C'") INFO 09-15 07:29:18 vllm-mindspore[logger.py:75] The config of vllm-mindspore logger has been updated successfully. INFO 09-15 07:29:18 vllm-mindspore[utils.py:195] environment variable "vLLM_MODEL_BACKEND" is MindFormers WARNING 09-15 07:29:18 vllm-mindspore[utils.py:198] "vLLM_MODEL_BACKEND" will be removed, please use "VLLM_MS_MODEL_BACKEND" INFO 09-15 07:29:18 vllm-mindspore[utils.py:201] environment variable "VLLM_MS_MODEL_BACKEND" is None INFO:datasets:Disabling PyTorch because USE_TF is set INFO:datasets:Disabling Tensorflow because USE_TORCH is set WARNING 09-15 07:29:20 vllm-mindspore[registry.py:51] Error when importing MindSpore ONE: No module named 'mindone' INFO 09-15 07:29:20 vllm-mindspore[utils.py:322] Run with Mindformers backend! 2025-09-15 07:29:21,594 - mindformers/home/work/easyedge/llm/output/log[/usr/lib/python3.10/warnings.py:109] - WARNING - RuntimeWarning: 'vllm_mindspore.entrypoints.__main__' found in sys.modules after import of package 'vllm_mindspore.entrypoints', but prior to execution of 'vllm_mindspore.entrypoints.__main__'; this may result in unpredictable behaviour WARNING 09-15 07:29:27 [env_override.py:17] NCCL_CUMEM_ENABLE is set to 0, skipping override. This may increase memory overhead with cudagraph+allreduce: https://github.com/NVIDIA/nccl/issues/1234 None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used. INFO 09-15 07:29:28 [importing.py:17] Triton not installed or not compatible; certain GPU-related functions will not be available. WARNING 09-15 07:29:28 [importing.py:29] Triton is not installed. Using dummy decorators. Install it via `pip install triton` to enable kernel compilation. /usr/local/lib/python3.10/dist-packages/torchvision/io/image.py:14: UserWarning: Failed to load image Python extension: 'not support import any ops for now.'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source? return self._float_to_str(self.smallest_subnormal) WARNING 09-15 07:30:00 vllm-mindspore[config.py:262] Casting bfloat16 to BFloat16. INFO 09-15 07:30:00 [config.py:1946] Defaulting to use mp for distributed inference INFO 09-15 07:30:00 [config.py:1980] Disabled the custom all-reduce kernel because it is not supported on current platform. INFO 09-15 07:30:00 [config.py:2195] Chunked prefill is enabled with max_num_batched_tokens=16384. INFO 09-15 07:30:01 [core.py:455] Waiting for init message from front-end. INFO 09-15 07:30:01 [core.py:70] Initializing a V1 LLM engine (v0.9.2.dev0+gb6553be1b.d20250715) with config: model='/model', speculative_config=None, tokenizer='/model', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=True, dtype=BFloat16, max_seq_len=32768, download_dir=None, load_format=auto, tensor_parallel_size=8, pipeline_parallel_size=1, disable_custom_all_reduce=True, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/model, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":1,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":["none"],"splitting_ops":[],"use_inductor":true,"compile_sizes":[20],"inductor_compile_config":{},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":512,"local_cache_dir":null} INFO 09-15 07:30:01 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast INFO 09-15 07:30:01 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1, 2, 3, 4, 5, 6, 7], buffer_handle=(8, 16777216, 10, 'psm_0a2e8213'), local_subscribe_addr='ipc:///tmp/edc446eb-ecd0-4605-adff-809d9e1652ae', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1072 in rank 1 to cpu: [180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191] WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208c10> (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_3320abdf'), local_subscribe_addr='ipc:///tmp/057e47c0-60ed-4c4a-9509-cdd5aab547fc', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1069 in rank 0 to cpu: [168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179] INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1075 in rank 2 to cpu: [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131] WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208af0> (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast WARNING 09-15 07:30:03 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f20bcd0> (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_c53a845c'), local_subscribe_addr='ipc:///tmp/527d32b7-f625-419e-8c0a-67bcec63eeed', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:03 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_2dd7d633'), local_subscribe_addr='ipc:///tmp/2cd29b69-1f1a-4f52-9712-9abd90c891e4', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1078 in rank 3 to cpu: [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143] INFO 09-15 07:30:03 vllm-mindspore[worker.py:148] bind process 1084 in rank 5 to cpu: [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f20bee0> (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_79f7bfd7'), local_subscribe_addr='ipc:///tmp/a91816c2-3d1c-4f9f-a0f0-ecda7f7feef6', remote_subscribe_addr=None, remote_addr_ipv6=False) WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208130> (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_b1f7503e'), local_subscribe_addr='ipc:///tmp/da945510-a81c-464d-b183-836c2b610d73', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1087 in rank 6 to cpu: [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f2091e0> (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_d79289ac'), local_subscribe_addr='ipc:///tmp/e9003014-cfb9-4786-bc33-255ae1a886cb', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1090 in rank 7 to cpu: [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f2093f0> (VllmWorker rank=7 pid=1090) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_afef9fd9'), local_subscribe_addr='ipc:///tmp/3b9c0a4d-8413-432b-8bea-d15f5d7bb898', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 09-15 07:30:04 vllm-mindspore[worker.py:148] bind process 1081 in rank 4 to cpu: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] WARNING 09-15 07:30:04 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0xffff1f208460> (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:04 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_f7a8f872'), local_subscribe_addr='ipc:///tmp/b9944f44-2e0c-4bd0-9493-759a79987cea', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:41 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1, 2, 3, 4, 5, 6, 7], buffer_handle=(7, 4194304, 6, 'psm_7cdf1ca7'), local_subscribe_addr='ipc:///tmp/649ecf4a-947a-4849-a8b2-7f3ecfcd8b66', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:41 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=6 pid=1087) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 6 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 6, EP rank 6 (VllmWorker rank=1 pid=1072) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 1 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1 (VllmWorker rank=7 pid=1090) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 7 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 7, EP rank 7 (VllmWorker rank=0 pid=1069) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 0 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0 (VllmWorker rank=2 pid=1075) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 2 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 2, EP rank 2 (VllmWorker rank=3 pid=1078) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 3 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 3, EP rank 3 (VllmWorker rank=5 pid=1084) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 5 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 5, EP rank 5 (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:41 [parallel_state.py:1065] rank 4 in world size 8 is assigned as DP rank 0, PP rank 0, TP rank 4, EP rank 4 (VllmWorker rank=4 pid=1081) INFO 09-15 07:30:42 vllm-mindspore[config.py:356] The generated MindFormers config: {'run_mode': 'predict', 'use_legacy': False, 'load_ckpt_format': 'safetensors', 'auto_trans_ckpt': True, 'parallel_mode': 'STAND_ALONE', 'parallel_config': {'model_parallel': 8, 'pipeline_stage': 1, 'data_parallel': 1, 'vocab_emb_dp': False}, 'model': {'model_config': {'compute_dtype': mindspore.bfloat16, 'max_position_embeddings': 32768, 'block_size': 32, 'layernorm_compute_dtype': 'bfloat16', 'rotary_dtype': 'bfloat16', 'params_dtype': 'bfloat16', 'router_dense_type': 'bfloat16', 'pre_process': True, 'post_process': True, 'offset': 0}}} (VllmWorker rank=4 pid=1081) {'parallel_config': None, 'pet_config': None, 'context_parallel_algo': 'colossalai_cp', 'is_dynamic': False, 'compute_dtype': mindspore.bfloat16, 'layernorm_compute_dtype': mindspore.bfloat16, 'rotary_dtype': mindspore.bfloat16, 'rotary_cos_format': 'rotate_half', 'bias_swiglu_fusion': False, 'mla_qkv_concat': True, 'use_contiguous_weight_layout_attention': False, 'use_interleaved_weight_layout_mlp': True, 'normalization': 'RMSNorm', 'fused_norm': True, 'add_bias_linear': False, 'add_mlp_fc1_bias_linear': None, 'add_mlp_fc2_bias_linear': None, 'gated_linear_unit': True, 'use_flash_attention': True, 'attention_pre_tokens': None, 'attention_next_tokens': None, 'query_chunk': True, 'rotary_seq_len_interpolation_factor': None, 'rope_scaling': None, 'use_rope_scaling': False, 'input_layout': 'BNSD', 'sparse_mode': 0, 'use_alibi_mask': False, 'use_attn_mask_compression': False, 'use_eod_attn_mask_compression': False, 'use_attention_mask': True, 'use_ring_attention': False, 'fp16_lm_cross_entropy': False, 'untie_embeddings_and_output_weights': True, 'hidden_act': 'silu', 'mask_func_type': 'attn_mask_fill', 'comp_comm_parallel': False, 'comp_comm_parallel_degree': 2, 'norm_topk_prob': True, 'use_fused_ops_topkrouter': False, 'use_shared_expert_gating': False, 'topk_method': 'greedy', 'npu_nums_per_device': 8, 'use_pad_tokens': True, 'callback_moe_droprate': False, 'moe_init_method_std': 0.01, 'first_k_dense_replace': None, 'moe_router_enable_expert_bias': False, 'moe_router_force_expert_balance': False, 'moe_router_score_function': 'softmax', 'moe_router_fusion': False, 'moe_shared_expert_gated': True, 'use_eod_reset': False, 'hidden_dropout': 0.0, 'residual_dtype': None, 'print_separate_loss': True, 'vocab_size': 151936, 'seq_length': 4096, 'pad_token_id': 0, 'ignore_token_id': -100, 'max_position_embeddings': 32768, 'sandwich_norm': False, 'tie_word_embeddings': False, 'block_size': 32, 'num_blocks': 1024, 'parallel_decoding_params': None, 'pre_process': True, 'post_process': True, 'dispatch_global_max_bs': 0, 'attn_reduce_scatter': False, 'attn_allgather': False, 'attn_allreduce': True, 'ffn_reduce_scatter': False, 'ffn_allgather': False, 'ffn_allreduce': True, 'use_alltoall': False, 'use_fused_mla': False, 'quantization_config': None, 'disable_lazy_inline': False, 'data_parallel_size': 1, 'tensor_model_parallel_size': 8, 'pipeline_model_parallel_size': 1, 'virtual_pipeline_model_parallel_size': None, 'sequence_parallel': False, 'context_parallel_size': 1, 'hierarchical_context_parallel_sizes': 1, 'expert_model_parallel_size': 1, 'expert_tensor_parallel_size': None, 'micro_batch_num': 1, 'seq_split_num': 1, 'gradient_aggregation_group': 4, 'offset': 0, 'ulysses_degree_in_cp': 1, 'vocab_emb_dp': False, 'fp16': False, 'bf16': False, 'params_dtype': mindspore.bfloat16, 'finalize_model_grads_func': None, 'grad_scale_func': None, 'grad_sync_func': None, 'param_sync_func': None, 'num_microbatches_with_partial_activation_checkpoints': None, 'cpu_offloading': False, 'cpu_offloading_num_layers': None, 'cpu_offloading_weights': False, 'op_swap': None, 'default_prefetch': 1, 'num_layers': 48, 'mtp_num_layers': 0, 'mtp_loss_scaling_factor': None, 'hidden_size': 2048, 'num_attention_heads': 16, 'softmax_scale': None, 'num_query_groups': 2, 'ffn_hidden_size': 5120, 'kv_channels': 256, 'attention_dropout': 0.0, 'fp32_residual_connection': False, 'apply_residual_connection_post_layernorm': False, 'layernorm_epsilon': 1e-06, 'layernorm_zero_centered_gamma': False, 'add_qkv_bias': False, 'activation_func': 'gelu', 'num_moe_experts': 512, 'rotary_interleaved': False, 'calculate_per_token_loss': False, 'multi_latent_attention': False, 'position_embedding_type': 'rope', 'rotary_base': 10000000, 'partial_rotary_factor': 0.25, 'qk_layernorm': False, 'linear_conv_kernel_dim': 4, 'linear_expand_v': 0, 'linear_key_head_dim': 128, 'linear_num_key_heads': 16, 'linear_num_value_heads': 32, 'linear_value_head_dim': 128, 'full_attention_interval': 4, 'init_method': <function init_method_normal.<locals>.init_ at 0xfffef038c0d0>, 'output_layer_init_method': <function scaled_init_method_normal.<locals>.init_ at 0xfffef038c160>, 'init_method_std': 0.02, 'init_model_with_meta_device': False, 'apply_query_key_layer_scaling': False, 'attention_softmax_in_fp32': True, 'softmax_compute_dtype': mindspore.float32, 'disable_bf16_reduced_precision_matmul': False, 'bias_activation_fusion': False, 'masked_softmax_fusion': False, 'persist_layer_norm': False, 'memory_efficient_layer_norm': False, 'bias_dropout_fusion': False, 'apply_rope_fusion': False, 'recompute': False, 'select_recompute': False, 'parallel_optimizer_comm_recompute': False, 'select_comm_recompute': False, 'mp_comm_recompute': True, 'recompute_slice_activation': False, 'select_recompute_exclude': False, 'select_comm_recompute_exclude': False, 'moe_shared_expert_intermediate_size': 512, 'moe_shared_expert_overlap': False, 'moe_layer_freq': 1, 'moe_ffn_hidden_size': 512, 'moe_router_load_balancing_type': 'aux_loss', 'moe_router_topk': 10, 'moe_router_num_groups': None, 'moe_router_group_topk': None, 'moe_router_pre_softmax': False, 'moe_router_topk_scaling_factor': None, 'moe_router_dtype': mindspore.bfloat16, 'moe_router_bias_update_rate': 0.001, 'moe_grouped_gemm': False, 'moe_aux_loss_coeff': 0.0, 'moe_z_loss_coeff': None, 'moe_input_jitter_eps': None, 'group_wise_a2a': False, 'moe_token_dispatcher_type': 'alltoall', 'moe_enable_deepep': False, 'moe_per_layer_logging': False, 'moe_expert_capacity_factor': None, 'moe_pad_expert_input_to_capacity': False, 'moe_token_drop_policy': 'probs', 'moe_permute_fusion': False, 'moe_apply_probs_on_input': False, 'shared_expert_num': 1, 'enable_expert_relocation': False, 'expert_relocation_initial_iteration': 20, 'expert_relocation_freq': 50, 'print_expert_load': False, 'cp_comm_type': 'all_gather'} (VllmWorker rank=1 pid=1072) 2025-09-15 07:30:47,508 - mindformers/home/work/easyedge/llm/output/log[mindformers/models/model_config_utils.py:165] - WARNING - | use_sliding_window | Useless | 。。。。 go': 'colossalai_cp', 'is_dynamic': False, 'compute_dtype': mindspore.bfloat16, 'layernorm_compute_dtype': mindspore.bfloat16, 'rotary_dtype': mindspore.bfloat16, 'rotary_cos_format': 'rotate_half', 'bias_swiglu_fusion': False, 'mla_qkv_concat': True, 'use_contiguous_weight_layout_attention': False, 'use_interleaved_weight_layout_mlp': True, 'normalization': 'RMSNorm', 'fused_norm': True, 'add_bias_linear': False, 'add_mlp_fc1_bias_linear': None, 'add_mlp_fc2_bias_linear': None, 'gated_linear_unit': True, 'use_flash_attention': True, 'attention_pre_tokens': None, 'attention_next_tokens': None, 'query_chunk': True, 'rotary_seq_len_interpolation_factor': None, 'rope_scaling': None, 'use_rope_scaling': False, 'input_layout': 'BNSD', 'sparse_mode': 0, 'use_alibi_mask': False, 'use_attn_mask_compression': False, 'use_eod_attn_mask_compression': False, 'use_attention_mask': True, 'use_ring_attention': False, 'fp16_lm_cross_entropy': False, 'untie_embeddings_and_output_weights': True, 'hidden_act': 'silu', 'mask_func_type': 'attn_mask_fill', 'comp_comm_parallel': False, 'comp_comm_parallel_degree': 2, 'norm_topk_prob': True, 'use_fused_ops_topkrouter': False, 'use_shared_expert_gating': False, 'topk_method': 'greedy', 'npu_nums_per_device': 8, 'use_pad_tokens': True, 'callback_moe_droprate': False, 'moe_init_method_std': 0.01, 'first_k_dense_replace': None, 'moe_router_enable_expert_bias': False, 'moe_router_force_expert_balance': False, 'moe_router_score_function': 'softmax', 'moe_router_fusion': False, 'moe_shared_expert_gated': True, 'use_eod_reset': False, 'hidden_dropout': 0.0, 'residual_dtype': None, 'print_separate_loss': True, 'vocab_size': 151936, 'seq_length': 4096, 'pad_token_id': 0, 'ignore_token_id': -100, 'max_position_embeddings': 32768, 'sandwich_norm': False, 'tie_word_embeddings': False, 'block_size': 32, 'num_blocks': 1024, 'parallel_decoding_params': None, 'pre_process': True, 'post_process': True, 'dispatch_global_max_bs': 0, 'attn_reduce_scatter': False, 'attn_allgather': False, 'attn_allreduce': True, 'ffn_reduce_scatter': False, 'ffn_allgather': False, 'ffn_allreduce': True, 'use_alltoall': False, 'use_fused_mla': False, 'quantization_config': None, 'disable_lazy_inline': False, 'data_parallel_size': 1, 'tensor_model_parallel_size': 8, 'pipeline_model_parallel_size': 1, 'virtual_pipeline_model_parallel_size': None, 'sequence_parallel': False, 'context_parallel_size': 1, 'hierarchical_context_parallel_sizes': 1, 'expert_model_parallel_size': 1, 'expert_tensor_parallel_size': None, 'micro_batch_num': 1, 'seq_split_num': 1, 'gradient_aggregation_group': 4, 'offset': 0, 'ulysses_degree_in_cp': 1, 'vocab_emb_dp': False, 'fp16': False, 'bf16': False, 'params_dtype': mindspore.bfloat16, 'finalize_model_grads_func': None, 'grad_scale_func': None, 'grad_sync_func': None, 'param_sync_func': None, 'num_microbatches_with_partial_activation_checkpoints': None, 'cpu_offloading': False, 'cpu_offloading_num_layers': None, 'cpu_offloading_weights': False, 'op_swap': None, 'default_prefetch': 1, 'num_layers': 48, 'mtp_num_layers': 0, 'mtp_loss_scaling_factor': None, 'hidden_size': 2048, 'num_attention_heads': 16, 'softmax_scale': None, 'num_query_groups': 2, 'ffn_hidden_size': 5120, 'kv_channels': 256, 'attention_dropout': 0.0, 'fp32_residual_connection': False, 'apply_residual_connection_post_layernorm': False, 'layernorm_epsilon': 1e-06, 'layernorm_zero_centered_gamma': False, 'add_qkv_bias': False, 'activation_func': 'gelu', 'num_moe_experts': 512, 'rotary_interleaved': False, 'calculate_per_token_loss': False, 'multi_latent_attention': False, 'position_embedding_type': 'rope', 'rotary_base': 10000000, 'partial_rotary_factor': 0.25, 'qk_layernorm': False, 'linear_conv_kernel_dim': 4, 'linear_expand_v': 0, 'linear_key_head_dim': 128, 'linear_num_key_heads': 16, 'linear_num_value_heads': 32, 'linear_value_head_dim': 128, 'full_attention_interval': 4, 'init_method': <function init_method_normal.<locals>.init_ at 0xfffef038c0d0>, 'output_layer_init_method': <function scaled_init_method_normal.<locals>.init_ at 0xfffef038c160>, 'init_method_std': 0.02, 'init_model_with_meta_device': False, 'apply_query_key_layer_scaling': False, 'attention_softmax_in_fp32': True, 'softmax_compute_dtype': mindspore.float32, 'disable_bf16_reduced_precision_matmul': False, 'bias_activation_fusion': False, 'masked_softmax_fusion': False, 'persist_layer_norm': False, 'memory_efficient_layer_norm': False, 'bias_dropout_fusion': False, 'apply_rope_fusion': False, 'recompute': False, 'select_recompute': False, 'parallel_optimizer_comm_recompute': False, 'select_comm_recompute': False, 'mp_comm_recompute': True, 'recompute_slice_activation': False, 'select_recompute_exclude': False, 'select_comm_recompute_exclude': False, 'moe_shared_expert_intermediate_size': 512, 'moe_shared_expert_overlap': False, 'moe_layer_freq': 1, 'moe_ffn_hidden_size': 512, 'moe_router_load_balancing_type': 'aux_loss', 'moe_router_topk': 10, 'moe_router_num_groups': None, 'moe_router_group_topk': None, 'moe_router_pre_softmax': False, 'moe_router_topk_scaling_factor': None, 'moe_router_dtype': mindspore.bfloat16, 'moe_router_bias_update_rate': 0.001, 'moe_grouped_gemm': False, 'moe_aux_loss_coeff': 0.0, 'moe_z_loss_coeff': None, 'moe_input_jitter_eps': None, 'group_wise_a2a': False, 'moe_token_dispatcher_type': 'alltoall', 'moe_enable_deepep': False, 'moe_per_layer_logging': False, 'moe_expert_capacity_factor': None, 'moe_pad_expert_input_to_capacity': False, 'moe_token_drop_policy': 'probs', 'moe_permute_fusion': False, 'moe_apply_probs_on_input': False, 'shared_expert_num': 1, 'enable_expert_relocation': False, 'expert_relocation_initial_iteration': 20, 'expert_relocation_freq': 50, 'print_expert_load': False, 'cp_comm_type': 'all_gather'} INFO 09-15 07:35:49 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast Loading safetensors checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████| 41/41 [03:05<00:00, 4.54s/it] (VllmWorker rank=1 pid=1072) 2025-09-15 07:36:30,371 - mindformers/home/work/easyedge/llm/output/log[mindformers/parallel_core/inference/base_models/gpt/gpt_model.py:473] - WARNING - These parameters are not loaded in the network: set() (VllmWorker rank=1 pid=1072) INFO 09-15 07:36:30 [default_loader.py:272] Loading weights took 3971725.01 seconds (VllmWorker rank=1 pid=1072) INFO 09-15 07:36:31 [gpu_model_runner.py:1624] Model loading took 36.8734 GiB and 348.161880 seconds INFO 09-15 07:36:31 vllm-mindspore[shm_broadcast.py:36] Entering mindspore shm_broadcast (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] WorkerProc hit an exception. (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] WorkerProc hit an exception. (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] Traceback (most recent call last): (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/multiproc_executor.py", line 522, in worker_busy_loop (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] Traceback (most recent call last): (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/executor/multiproc_executor.py", line 522, in worker_busy_loop (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 205, in determine_available_memory (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] self.model_runner.profile_run() (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_worker.py", line 205, in determine_available_memory (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 2012, in profile_run (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] self.model_runner.profile_run() (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self._dummy_run(self.max_num_tokens) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 2012, in profile_run (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self._dummy_run(self.max_num_tokens) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/msadapter/utils/_contextlib.py", line 117, in decorate_context (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 1847, in _dummy_run (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return func(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] outputs = model( (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 1847, in _dummy_run (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/model_base.py", line 244, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] outputs = model( (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self.forward(input_ids, (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/model_base.py", line 244, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/mf_models/mindformers.py", line 376, in forward (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self.forward(input_ids, (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self.network(**model_inputs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/vllm_mindspore/model_executor/models/mf_models/mindformers.py", line 376, in forward (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1373, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] hidden_states = self.network(**model_inputs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._complex_call(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1373, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1383, in _complex_call (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._complex_call(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = self.construct(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/nn/cell.py", line 1383, in _complex_call (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindformers/models/utils.py", line 167, in decorator (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] output = self.construct(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return ms.jit(func, jit_level='O0', infer_boost='on')(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindformers/models/utils.py", line 167, in decorator (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 1117, in staging_specialize (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return ms.jit(func, jit_level='O0', infer_boost='on')(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] out = jit_executor(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 1117, in staging_specialize (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 187, in wrapper (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] out = jit_executor(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] results = fn(*arg, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 187, in wrapper (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 656, in __call__ (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] results = fn(*arg, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict, res = self._predict(*args, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 656, in __call__ (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 639, in _predict (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict, res = self._predict(*args, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise err (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 639, in _predict (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 636, in _predict (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise err (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict_phase = self.compile(self.fn.__name__, *args_list, **kwargs) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 636, in _predict (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 693, in compile (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] predict_phase = self.compile(self.fn.__name__, *args_list, **kwargs) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] compile_args = self._generate_compile_args(args) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 693, in compile (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 891, in _generate_compile_args (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] compile_args = self._generate_compile_args(args) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._generate_compile_args_by_set_inputs(args_list) (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 891, in _generate_compile_args (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 848, in _generate_compile_args_by_set_inputs (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] return self._generate_compile_args_by_set_inputs(args_list) (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise ValueError(f"The number of actual input tensors: {len(args_list)} is not equal to the number of " (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] File "/usr/local/lib/python3.10/dist-packages/mindspore/common/api.py", line 848, in _generate_compile_args_by_set_inputs (VllmWorker rank=2 pid=1075) ERROR 09-15 07:36:31 [multiproc_executor.py:527] ValueError: The number of actual input tensors: 17 is not equal to the number of dynamic shape tensors: 16. (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] raise ValueError(f"The number of actual input tensors: {len(args_list)} is not equal to the number of " (VllmWorker rank=3 pid=1078) ERROR 09-15 07:36:31 [multiproc_executor.py:527] ValueError: The number of actual input tensors: 17 is not equal to the number of dynamic shape tensors: 16. (VllmWorker rank=1 pid=1072) ERROR 09-15 07:36:31 [multiproc_executor.py:527]
评论 (
1
)
登录
后才可以发表评论
状态
TODO
TODO
ACCEPTED
WIP
VALIDATION
DONE
CLOSED
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (36)
标签 (3)
master
hybrid-v2
ms_inferrt
r0.5.0
r0.4.1
r0.4.1_ms_2.8.0_joint_test
br_infer_boom_1115
qwen3_omni_dev
v0.10.2
r0.4.0
revert-merge-1161-r0.4.0
develop
revert-merge-1133-ms_inferrt
model-external
revert-merge-1067-ms_inferrt
beam-search-dev
br_infer_boom
br_feature_glm4v
r0.3.0
r0.3.0.rc1
master_qwen3_next
refactor-hybrid
r0.3.0_qwen3_next
duo-dev
0.9.1-dev
0.8.3-develop-bak
develop-refactor
pangu-pro-moe-bak
pangu-pro-moe
cpp-dev
duo-qwq-dev
r0.2
v0.8.3-dev
r0.1_opt
r0.1
r0.1.1
v0.4.0
ms_inferrt_v0.1.0
v0.3.0
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/mindspore/vllm-mindspore.git
git@gitee.com:mindspore/vllm-mindspore.git
mindspore
vllm-mindspore
vllm-mindspore
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
评论
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册