# NTU-Machine-learning **Repository Path**: poseidon2011/NTU-Machine-learning ## Basic Information - **Project Name**: NTU-Machine-learning - **Description**: 台湾大学李宏毅老师机器学习 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-27 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 大鱼AI🐟 :李宏毅机器学习(台湾大学) ## 课程资料 1. [课程主页](http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html) 2. [课程笔记](https://blog.csdn.net/dukuku5038/article/details/82253966) 3. [课程视频](https://www.bilibili.com/video/av10590361?from=search&seid=8516959386096686045) 4. [环境配置Anaconda](https://github.com/learning511/Stanford-Machine-Learning-camp/tree/master) 5. [作业介绍]() 6. 比赛环境推荐使用Linux或者Mac系统,以下环境搭建方法皆适用: [Docker环境配置](https://github.com/ufoym/deepo) [本地环境配置](https://github.com/learning511/cs224n-learning-camp/blob/master/environment.md) ## 重要一些的资源: 1. [深度学习经典论文](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap.git) 2. [深度学习斯坦福教程](http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B) 3. [廖雪峰python3教程](https://www.liaoxuefeng.com/article/001432619295115c918a094d8954bd493037b03d27bf9a9000) 4. [github教程](https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000) 5. [莫烦机器学习教程](https://morvanzhou.github.io/tutorials) 6. [深度学习经典论文](https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap.git) 7. [机器学习代码修行100天](https://github.com/Avik-Jain/100-Days-Of-ML-Code) 8. [吴恩达机器学习新书:machine learning yearning](https://github.com/AcceptedDoge/machine-learning-yearning-cn) 9. [Dr.Wu 专栏(机器学习专题)](https://blog.csdn.net/dukuku5038/column/info/28363) 10. [Dr.Wu 专栏(深度学习专题)](https://blog.csdn.net/column/details/28693.html) 11. [自上而下的学习路线: 软件工程师的机器学习)](https://github.com/ZuzooVn/machine-learning-for-software-engineers/blob/master/README-zh-CN.md) ## 1. 前言 ### 中文世界中最好的机器学习课程! 李宏毅老师的机器学习和深度学习系列课程,是中文世界中最好!课程中有深入浅出的讲解和幽默生动的比喻(还有口袋妖怪哦)。关键一切都是中文的!(除了课件^_^) 本课程李宏毅老师的机器学习核心内容带学,作业讲解。主要包括: (一)监督学习(回归、分类、BP反向传播、梯度下降) (二)无监督学习(AutoEncoder、Neighbor Embedding、Deep Generative Model) (三)迁移学习 (Transfer learning) (四)结构化学习(Structure learning) 本课程每课都有课件,每周都有配套作业代码,十分推荐推荐学习。 ## 2.数学知识复习 1.[线性代数](http://web.stanford.edu/class/cs224n/readings/cs229-linalg.pdf) 2.[概率论](http://web.stanford.edu/class/cs224n/readings/cs229-prob.pdf) 3.[凸函数优化](http://web.stanford.edu/class/cs224n/readings/cs229-cvxopt.pdf) 4.[随机梯度下降算法](http://cs231n.github.io/optimization-1/) #### 中文资料: - [机器学习中的数学基本知识](https://www.cnblogs.com/steven-yang/p/6348112.html) - [统计学习方法](http://vdisk.weibo.com/s/vfFpMc1YgPOr) **大学数学课本(从故纸堆里翻出来^_^)** ### 3.编程工具 #### 斯坦福资料: - [Python复习](http://web.stanford.edu/class/cs224n/lectures/python-review.pdf) #### 4. 中文书籍推荐: - 《机器学习》周志华 - 《统计学习方法》李航 - 《机器学习课》邹博 ## 5. 学习安排 本课程需要8周共15节课, 每周具体时间划分为4个部分: - 1部分安排周一到周二 - 2部分安排在周四到周五 - 3部分安排在周日 - 4部分作业是本周任何时候空余时间 - 周日晚上提交作业运行截图 - 周三、周六休息^_^ #### 6.作业提交指南: 训练营的作业自检系统已经正式上线啦!只需将作业发送到训练营公共邮箱即可,知识星球以打卡为主,不用提交作业。以下为注意事项: ~~<0> 课程资料:[链接]() 密码: <1> 训练营代码公共邮箱:NTU-ML@xx.com <2> [查询自己成绩:]() <3> 将每周作业压缩成zip文件,文件名为“学号+作业编号”,例如:"NTU-ML-010037-01.zip" <4> 注意不要改变作业中的"方法名","类名"不然会检测失败!~~ ## 7.学习安排 一、整体学习脑图 ![](assets/markdown-img-paste-2019021415594594.png) 二、具体学习计划 ### week 1 **学习准备** **知识点复习** **学习组队** **第1节: 引言(Introduction)** **课件:**[lecture1](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/1-introduction.pdf) **笔记:**[lecture1-note1](https://blog.csdn.net/dukuku5038/article/details/82347021) **视频:** 1.1 欢迎:[Welcome to Machine Learning](https://www.bilibili.com/video/av10590361/?p=1) 1.2 为什么要学习机器学习?:[Why learning ?](https://www.bilibili.com/video/av10590361/?p=2) **作业 Week1:**: 制定自己的学习计划,开通自己的学习博客,注册自己的github ### week 2 **第2节: 回归问题** **课件:**[lecture2](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/2-Regression.pdf) **笔记:**[lecture2-note2](https://blog.csdn.net/dukuku5038/article/details/82503111) **视频:** 2.1 回归:[Regression](https://www.bilibili.com/video/av10590361/?p=3) 2.2 回归 Demo:[Demo](https://www.bilibili.com/video/av9912938/?p=4) **第3节: 错误分析** **课件:**[lecture3](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/3-Bias%20and%20Variance%20(v2).pdf) **笔记:**[lecture3-note3](https://blog.csdn.net/dukuku5038/article/details/82682855) **视频:** 2.3 错误从哪里来[Error Handle](https://www.bilibili.com/video/av10590361/?p=5) **作业 Week2:**: 纯python[线性回归](https://github.com/learning511/Stanford-Machine-Learning-camp/blob/master/Assignments/machine-learning-ex1/ex1.pdf/) --------------------------------------------------------- ### week 3 **第4节: 梯度下降(Gradient Descent )** **课件:**[lecture4](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/4-Gradient%20Descent%20(v2).pdf) **笔记:**[lecture4-note4](https://blog.csdn.net/dukuku5038/article/details/83608873) **视频:** 3.1梯度下降:[Gradient Descent](https://www.bilibili.com/video/av10590361/?p=6) 3.2梯度下降Demo1:[Gradient Descent Demo1](https://www.bilibili.com/video/av10590361/?p=7) 3.3梯度下降Demo2:[Gradient Descent Demo2](https://www.bilibili.com/video/av10590361/?p=8) **作业 Week3:**: [PM2.5 预测](https://ntumlta.github.io/2017fall-ml-hw1/) --------------------------------------------------------- ### Week 4 **第5节:分类:概率生成模型(Classification:Probabilistic Generative Model)** **课件:**[lecture5](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/5-Classification%20(v3).pdf) **笔记:**[lecture5-note5](https://blog.csdn.net/dukuku5038/article/details/82698867) **视频:** 4.1分类:概率生成模型:[Classification:Probabilistic Generative Model](https://www.bilibili.com/video/av10590361/?p=10) **第6节:分类:逻辑回归(Logistic Regression)** **课件:**[lecture6](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/6-Logistic%20Regression%20(v3).pdf) **笔记:**[lecture6-note6](https://blog.csdn.net/dukuku5038/article/details/82585523) **视频:** 4.2分类:逻辑回归:[Logistic Regression](https://www.bilibili.com/video/av10590361/?p=11) **作业 Week4:**: 收入预测[Winner or Loser](https://ntumlta.github.io/2017fall-ml-hw2) --------------------------------------------------------- ### Week 5 **第7节:深度学习简介(Introduction to Deep learning)** **课件:**[lecture7](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/7-DL%20(v2).pdf) **笔记:**[lecture7-note7](https://blog.csdn.net/dukuku5038/article/details/83217542) **视频:** 5.1 深度度学习简介:[Introduction to Deep learning](https://www.bilibili.com/video/av10590361/?p=13) 5.2 反向传播算法:[Back Prppagation](https://www.bilibili.com/video/av10590361/?p=14)) **第8节:“Hello world” of Deep learning** **课件:**[lecture8](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/9-keras.pdf) **笔记:**[lecture8-note8](https://blog.csdn.net/dukuku5038/article/details/83721330) **视频:** 5.1 [DeepLearning Demo](https://www.bilibili.com/video/av10590361/?p=15) 5.2 Keras Demo:[Demo](https://www.bilibili.com/video/av10590361/?p=16) 5.2 Keras Demo1:[Demo1](https://www.bilibili.com/video/av10590361/?p=17) **第9节:深度学习技巧 Deep learning tips** **课件:**[lecture9](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/10-DNN%20tip.pdf) **笔记:**[lecture8-note9](https://blog.csdn.net/dukuku5038/article/details/83680923) **视频:** 5.3 [DeepLearning tips](https://www.bilibili.com/video/av10590361/?p=18) 5.4 Keras Demo2:[Demo2](https://www.bilibili.com/video/av10590361/?p=19) **作业 Week5:**: (1)深度神经网络[Keras实现手写数字识别]() (2)(预习选做)卷积神经网络[Keras实现手写数字识别]() --------------------------------------------------------- ### Week 6 **第10节:卷积神经网络(CNN)** **课件:**[lecture10](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/11-CNN.pdf) **笔记:**[lecture10-note10](https://blog.csdn.net/dukuku5038/article/details/83735926) **视频:** 6.1 卷积神经网络:[CNN](https://www.bilibili.com/video/av10590361/?p=21) **第11节:为什么要深度学习(Why Deep)** **课件:**[lecture11](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/12-Why-deep.pdf) **笔记:**[lecture11-note11]() **视频:** 6.2 为什么要深度学习:[CNN](https://www.bilibili.com/video/av10590361/?p=22) **作业 Week6:**: 面部情绪分类[Image Classification](https://ntumlta.github.io/ML-Assignment3/index.html)) 面部情绪分类[【中文版点击查看】](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/Week6%20-%20Image%20Sentiment%20Classification%20-%20%E4%BD%9C%E4%B8%9A%E8%A6%81%E6%B1%82.md) --------------------------------------------------------- ### Week 7 **第12节:循环神经网络(RNN)** **课件:**[lecture12](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/13-RNN%20(v2).pdf) **笔记:**[lecture12-note12](https://blog.csdn.net/dukuku5038/article/details/83830994) **视频:** 7.1 循环神经网络:[RNN](https://www.bilibili.com/video/av10590361/?p=36) **第13节:循环神经网络(LSTM、GRU)** **课件:**[lecture13](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/13-RNN%20(v2).pdf) **笔记:**[lecture13-note13](https://blog.csdn.net/dukuku5038/article/details/83870172) **视频:** 7.2 循环神经网络:[LSTM,GRU](https://www.bilibili.com/video/av10590361/?p=37) **作业 Week7:**: Twitter文本情绪分类[Text Sentiment](https://ntumlta.github.io/2017fall-ml-hw4)) --------------------------------------------------------- ### Week 8 **第14节:迁移学习** **课件:**[lecture14](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/16-transfer%20(v3).pdf) **笔记:**[lecture14-note14]() **视频:** 8.1 迁移学习:[Transfer learning](https://www.bilibili.com/video/av10590361/?p=30) **第15节:强化学习(Reinforcement learning)** **课件:**[lecture15](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E8%AF%BE%E4%BB%B6/17-RL%20(v6).pdf) **笔记:**[lecture15-note15](https://blog.csdn.net/dukuku5038/article/details/84810898) **视频:** 8.2 强化学习:[Reinforcement learning](https://www.bilibili.com/video/av10590361/?p=39) **作业 Week8:**: 【英文】:小车爬山环境简介[MountainCarContinuous-V0](https://gym.openai.com/envs/MountainCarContinuous-v0/) 【中文】小车爬坡作业问题[MountainCarContinuous-V0](https://github.com/dafish-ai/NTU-Machine-learning/blob/master/%E6%9D%8E%E5%BC%98%E6%AF%85-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0-%E4%BD%9C%E4%B8%9A/Week8-MountainCarContinuous-V0%20-%E4%BD%9C%E4%B8%9A%E8%A6%81%E6%B1%82%E4%B8%8E%E7%8E%AF%E5%A2%83.md)