# keentune_brain **Repository Path**: qinglong_wang/keentune_brain ## Basic Information - **Project Name**: keentune_brain - **Description**: No description available - **Primary Language**: Unknown - **License**: MulanPSL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 12 - **Created**: 2022-02-22 - **Last Updated**: 2022-02-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [English](./keentune-brain/README.md)| [简体中文](./keentune-brain/README.md) # KeenTune Brain ## Introduction --- KeenTune-brain is an AI tuning Engine of 'KeenTune' system parameter optimization system. KeenTune-brain implements a variety of intelligent tuning algorithms. It generates a candidate configuration for KeenTune system, obtains an evaluation from Keentune-bench, and gives the optimal parameter configuration. ## Installation --- ### 1. install python-setuptools ```sh $ sudo apt-get install python-setuptools or $ sudo yum install python-setuptools ``` ### 2. install keentune-brain ```shell $ sudo python3 setup.py install ``` ### 3. install requirements ```shell $ pip3 install -r requirements.txt ``` ### 4. run ```shell $ keentune-brain ``` ## Algorithm --- ### Sensitive Parameter Detection Algorithm ### 线性回归模型 ElasticNet 用于捕捉参数与调优结果之间明显的线性相关性。ElasticnNet可以快速训练完成,结合多轮次识别部分介绍,选择线性模型可以保障在多轮次识别的情况下,整体算法执行效率仍然较高。 ### 单变量互信息 Mutual Information 用于捕捉单一参数和调优结果之间的线性/非线性相关性,避免由于参数冗余造成敏感参数的漏报。 ### 非线性模型XGBoost+可解释AI算法-SHAP 用于捕捉参数与调有结果之间复杂的非线性关系,并通过可解释AI算法量化黑盒非线性模型捕捉到的相关性。 ### Tuning Algorithm #### TPE(Tree-structured Parzen Estimator) 基于GP代理模型和SMBO框架实现的参数调优算法,KeenTune中使用[hyperopt](https://github.com/hyperopt/hyperopt)实现TPE算法 [Algorithms for Hyper-Parameter Optimization](https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf) #### HORD(Radial Basis Function and Dynamic coordinate search) 基于RBF代理模型和Dycors的参数调优算法,KeenTune中使用[pySOT](https://github.com/dme65/pySOT)实现了HORD算法 [HORD](https://github.com/ilija139/HORD) ## 代码结构 --- + algorithm: 算法模块,包括Tuning Algorithm和Sensitive Parameter Detection Algorithm + common: 通用方法模块 + controller: Web通信模块 + visualization: 可视化模块 ## Documentation ---