# GraphCL **Repository Path**: r1Way/graph-cl ## Basic Information - **Project Name**: GraphCL - **Description**: 对抑郁症数据使用GraphCL - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-22 - **Last Updated**: 2025-11-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 项目说明 本仓库基于以下项目进行开发和融合: - [Shen-Lab/GraphCL](https://github.com/Shen-Lab/GraphCL): [NeurIPS 2020] "Graph Contrastive Learning with Augmentations" by Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen - [facebookresearch/mixup-cifar10](https://github.com/facebookresearch/mixup-cifar10): mixup: Beyond Empirical Risk Minimization 我们在 OpenNeuro 数据集(Resting state with closed eyes for patients with depression and healthy participants)上进行了测试和实验。 ## Dependencies * [PyTorch Geometric](https://github.com/rusty1s/pytorch_geometric#installation)==1.6.0 Then, you need to create a directory for recoreding finetuned results to avoid errors: ``` mkdir logs ``` ## Training & Evaluation ``` ./go.sh $GPU_ID $DATASET_NAME $AUGMENTATION ``` ```$DATASET_NAME``` is the dataset name (please refer to https://chrsmrrs.github.io/datasets/docs/datasets/), ```$GPU_ID``` is the lanched GPU ID and ```$AUGMENTATION``` could be ```random2, random3, random4``` that sampling from {NodeDrop, Subgraph}, {NodeDrop, Subgraph, EdgePert} and {NodeDrop, Subgraph, EdgePert, AttrMask}, seperately. ## Acknowledgements The backbone implementation is reference to https://github.com/fanyun-sun/InfoGraph/tree/master/unsupervised.