# ALBEF
**Repository Path**: sadsriver/ALBEF
## Basic Information
- **Project Name**: ALBEF
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: BSD-3-Clause
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-11-09
- **Last Updated**: 2025-11-09
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## Align before Fuse: Vision and Language Representation Learning with Momentum Distillation, NeurIPS 2021 Spotlight (Salesforce Research).
## Announcement: ALBEF is now officially integrated into [LAVIS](https://github.com/salesforce/LAVIS) - a one-stop library for language-and-vision research and applications!
This is the official PyTorch implementation of the ALBEF paper [Blog].
This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on MSCOCO and Flickr30k,
and visual grounding on RefCOCO+. Pre-trained and finetuned checkpoints are released.
### Requirements:
* pytorch 1.8.0
* transformers 4.8.1
* timm 0.4.9
### Download:
* Pre-trained checkpoint [[14M](https://storage.googleapis.com/sfr-pcl-data-research/ALBEF/ALBEF.pth)] / [[4M](https://storage.googleapis.com/sfr-pcl-data-research/ALBEF/ALBEF_4M.pth)]
* Dataset json files for downstream tasks
* Dataset json files for pre-training (the image paths in each json file need to be changed to your own directory)
* Finetuned checkpoint for retrieval on MSCOCO
* Finetuned checkpoint for retrieval on Flickr30k
* Finetuned checkpoint for VQA
* Finetuned checkpoint for visual grounding on RefCOCO+
### Visualization:
We provide code in visualize.ipynb to visualize the important areas in an image for each word in a text.
Here is an example visualization using the visual grounding checkpoint.
Try the Replicate demo here [](https://replicate.com/salesforce/albef).
### Pre-training on custom datasets:
1. Prepare training json files where each json file contains a list. Each item in the list is a dictonary with two key-value pairs: {'image': path_of_image, 'caption': text_of_image}.
2. In configs/Pretrain.yaml, set the paths for the json files.
3. Pre-train the model using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain.py --config ./configs/Pretrain.yaml --output_dir output/Pretrain### Image-Text Retrieval: 1. Download MSCOCO or Flickr30k datasets from the original websites. 2. Download and extract the provided dataset json files. 3. In configs/Retrieval_coco.yaml or configs/Retrieval_flickr.yaml, set the paths for the json files and the image path. 4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Retrieval.py \ --config ./configs/Retrieval_flickr.yaml \ --output_dir output/Retrieval_flickr \ --checkpoint [Pretrained checkpoint]### VQA: 1. Download VQA v2 dataset and Visual Genome dataset from the original websites. 2. Download and extract the provided dataset json files. 3. In configs/VQA.yaml, set the paths for the json files and the image paths. 4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VQA.py \ --config ./configs/VQA.yaml \ --output_dir output/vqa \ --checkpoint [Pretrained checkpoint]5. Evaluate the result using the official evaluation server. ### Visual Entailment: 1. Download SNLI-VE dataset from the original website. 2. Download and extract the provided dataset json files. 3. In configs/VE.yaml, set the paths for the json files and the image path. 4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env VE.py \ --config ./configs/VE.yaml \ --output_dir output/VE \ --checkpoint [Pretrained checkpoint]### Visual Grounding on RefCOCO+: 1. Download MSCOCO dataset from the original website. 2. Download and extract the provided dataset json files. 3. In configs/Grounding.yaml, set the paths for the json files and the image path. 4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Grounding.py \ --config ./configs/Grounding.yaml \ --output_dir output/RefCOCO \ --gradcam_mode itm \ --block_num 8 \ --checkpoint [Pretrained checkpoint]### NLVR2: NLVR2 requires an additional pre-training step with text-assignment (TA) to adapt the model for image-pair inputs. In order to perform TA, first set the paths for the json training files in configs/NLVR_pretrain.yaml, then run:
python -m torch.distributed.launch --nproc_per_node=8 --use_env Pretrain_nlvr.py \ --config ./configs/NLVR_pretrain.yaml \ --output_dir output/NLVR_pretrain \ --checkpoint [Pretrained checkpoint]We provide the checkpoint after TA pre-training, which can be fine-tuned with the following steps. 1. Download NLVR2 dataset from the original website. 2. Download and extract the provided dataset json files. 3. In configs/NLVR.yaml, set the paths for the json files and the image path. 4. Finetune the pre-trained checkpoint using 8 A100 GPUs:
python -m torch.distributed.launch --nproc_per_node=8 --use_env NLVR.py \ --config ./configs/NLVR.yaml \ --output_dir output/NLVR \ --checkpoint [TA pretrained checkpoint]### Citation If you find this code to be useful for your research, please consider citing.
@inproceedings{ALBEF,
title={Align before Fuse: Vision and Language Representation Learning with Momentum Distillation},
author={Junnan Li and Ramprasaath R. Selvaraju and Akhilesh Deepak Gotmare and Shafiq Joty and Caiming Xiong and Steven Hoi},
year={2021},
booktitle={NeurIPS},
}