# CUDA_3D **Repository Path**: stophin/CUDA_3D ## Basic Information - **Project Name**: CUDA_3D - **Description**: CUDA 3D using Nvidia GPU - **Primary Language**: C++ - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-06-02 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CUDA_3D #### 项目介绍 CUDA 3D using Nvidia GPU NOTE: When using double instead of float, there will be less noise. Remember to set nvcc to sm_60 to support double. Supported SM and Gencode variations Supported on CUDA 7 and later Fermi (CUDA 3.2 and later, deprecated from CUDA 9): SM20 or SM_20, compute_30 – Older cards such as GeForce 400, 500, 600, GT-630 Kepler (CUDA 5 and later): SM30 or SM_30, compute_30 – Kepler architecture (generic – Tesla K40/K80, GeForce 700, GT-730) Adds support for unified memory programming SM35 or SM_35, compute_35 – More specific Tesla K40 Adds support for dynamic parallelism. Shows no real benefit over SM30 in my experience. SM37 or SM_37, compute_37 – More specific Tesla K80 Adds a few more registers. Shows no real benefit over SM30 in my experience Maxwell (CUDA 6 and later): SM50 or SM_50, compute_50 – Tesla/Quadro M series SM52 or SM_52, compute_52 – Quadro M6000 , GeForce 900, GTX-970, GTX-980, GTX Titan X SM53 or SM_53, compute_53 – Tegra (Jetson) TX1 / Tegra X1 Pascal (CUDA 8 and later) SM60 or SM_60, compute_60 – GP100/Tesla P100 – DGX-1 (Generic Pascal) SM61 or SM_61, compute_61 – GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4 SM62 or SM_62, compute_62 – Drive-PX2, Tegra (Jetson) TX2, Denver-based GPU Volta (CUDA 9 and later) SM70 or SM_70, compute_70 – Tesla V100 SM71 or SM_71, compute_71 – probably not implemented SM72 or SM_72, compute_72 – currently unknown