# mask3d
**Repository Path**: sylar0417/mask3d
## Basic Information
- **Project Name**: mask3d
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: dev
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-10-24
- **Last Updated**: 2023-10-24
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## Mask3D: Mask Transformer for 3D Instance Segmentation
Jonas Schult1,
Francis Engelmann2,3,
Alexander Hermans1,
Or Litany4,
Siyu Tang3,
Bastian Leibe1
1RWTH Aachen University
2ETH AI Center
3ETH Zurich
4NVIDIA
Mask3D predicts accurate 3D semantic instances achieving state-of-the-art on ScanNet, ScanNet200, S3DIS and STPLS3D.
[](https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?p=mask3d-for-3d-semantic-instance-segmentation)
[](https://paperswithcode.com/sota/3d-instance-segmentation-on-scannet200?p=mask3d-for-3d-semantic-instance-segmentation)
[](https://paperswithcode.com/sota/3d-instance-segmentation-on-s3dis?p=mask3d-for-3d-semantic-instance-segmentation)
[](https://paperswithcode.com/sota/3d-instance-segmentation-on-stpls3d?p=mask3d-for-3d-semantic-instance-segmentation)


[[Project Webpage](https://jonasschult.github.io/Mask3D/)]
[[Paper](https://arxiv.org/abs/2210.03105)]
[[Demo](https://francisengelmann.github.io/mask3d/)]
## News
* **17. January 2023**: Mask3D is accepted at ICRA 2023. :fire:
* **14. October 2022**: STPLS3D support added.
* **10. October 2022**: Mask3D ranks 2nd on the [STPLS3D Challenge](https://codalab.lisn.upsaclay.fr/competitions/4646#results) hosted by the [Urban3D Workshop](https://urban3dchallenge.github.io/) at ECCV 2022.
* **6. October 2022**: [Mask3D preprint](https://arxiv.org/abs/2210.03105) released on arXiv.
* **25. September 2022**: Code released.
## Code structure
We adapt the codebase of [Mix3D](https://github.com/kumuji/mix3d) which provides a highly modularized framework for 3D Semantic Segmentation based on the MinkowskiEngine.
```
├── mix3d
│ ├── main_instance_segmentation.py <- the main file
│ ├── conf <- hydra configuration files
│ ├── datasets
│ │ ├── preprocessing <- folder with preprocessing scripts
│ │ ├── semseg.py <- indoor dataset
│ │ └── utils.py
│ ├── models <- Mask3D modules
│ ├── trainer
│ │ ├── __init__.py
│ │ └── trainer.py <- train loop
│ └── utils
├── data
│ ├── processed <- folder for preprocessed datasets
│ └── raw <- folder for raw datasets
├── scripts <- train scripts
├── docs
├── README.md
└── saved <- folder that stores models and logs
```
### Dependencies :memo:
The main dependencies of the project are the following:
```yaml
python: 3.7.7
cuda: 11.1
```
You can set up a pyenv environment as follows
```
pyenv install -v 3.7.7
pyenv virtualenv 3.7.7 mask3d
pyenv local mask3d
pip install --upgrade pip
pip install wheel==0.38.4
pip install -r requirements.txt
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install https://data.pyg.org/whl/torch-1.10.0%2Bcu113/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
pip install 'git+https://github.com/facebookresearch/detectron2.git@710e7795d0eeadf9def0e7ef957eea13532e34cf' --no-deps
cd third_party/pointnet2 && python setup.py install
# go to a directory you want to clone MinkowskiEngine into
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
pyenv local mask3d
python setup.py install
```
### Data preprocessing :hammer:
After installing the dependencies, we preprocess the datasets.
#### ScanNet / ScanNet200
First, we apply Felzenswalb and Huttenlocher's Graph Based Image Segmentation algorithm to the test scenes using the default parameters.
Please refer to the [original repository](https://github.com/ScanNet/ScanNet/tree/master/Segmentator) for details.
Put the resulting segmentations in `./data/raw/scannet_test_segments`.
```
python datasets/preprocessing/scannet_preprocessing.py preprocess \
--data_dir="PATH_TO_RAW_SCANNET_DATASET" \
--save_dir="../../data/processed/scannet" \
--git_repo="PATH_TO_SCANNET_GIT_REPO" \
--scannet200=false/true
```
#### S3DIS
The S3DIS dataset contains some smalls bugs which we initially fixed manually. We will soon release a preprocessing script which directly preprocesses the original dataset. For the time being, please follow the instructions [here](https://github.com/JonasSchult/Mask3D/issues/8#issuecomment-1279535948) to fix the dataset manually. Afterwards, call the preprocessing script as follows:
```
python datasets/preprocessing/s3dis_preprocessing.py preprocess \
--data_dir="PATH_TO_Stanford3dDataset_v1.2" \
--save_dir="../../data/processed/s3dis"
```
#### STPLS3D
```
python datasets/preprocessing/stpls3d_preprocessing.py preprocess \
--data_dir="PATH_TO_STPLS3D" \
--save_dir="../../data/processed/stpls3d"
```
### Training and testing :train2:
Train Mask3D on the ScanNet dataset:
```bash
python main_instance_segmentation.py
```
Please refer to the [config scripts](https://github.com/JonasSchult/Mask3D/tree/main/scripts) (for example [here](https://github.com/JonasSchult/Mask3D/blob/main/scripts/scannet/scannet_val.sh#L15)) for detailed instructions how to reproduce our results.
In the simplest case the inference command looks as follows:
```bash
python main_instance_segmentation.py \
general.checkpoint='PATH_TO_CHECKPOINT.ckpt' \
general.train_mode=false
```
## Trained checkpoints :floppy_disk:
We provide detailed scores and network configurations with trained checkpoints.
### [S3DIS](http://buildingparser.stanford.edu/dataset.html) (pretrained on ScanNet train+val)
Following PointGroup, HAIS and SoftGroup, we finetune a model pretrained on ScanNet ([config](./scripts/scannet/scannet_pretrain_for_s3dis.sh) and [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/scannet_pretrained.ckpt)).
| Dataset | AP | AP_50 | AP_25 | Config | Checkpoint :floppy_disk: | Scores :chart_with_upwards_trend: | Visualizations :telescope:
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| Area 1 | 69.3 | 81.9 | 87.7 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area1_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area1_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_1/)
| Area 2 | 44.0 | 59.5 | 66.5 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area2_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area2_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_2/)
| Area 3 | 73.4 | 83.2 | 88.2 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area3_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area3_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_3/)
| Area 4 | 58.0 | 69.5 | 74.9 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area4_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area4_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_4/)
| Area 5 | 57.8 | 71.9 | 77.2 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area5_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area5_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_5/)
| Area 6 | 68.4 | 79.9 | 85.2 | [config](scripts/s3dis/s3dis_pretrained.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/scannet_pretrained/area6_scannet_pretrained.ckpt) | [scores](./docs/detailed_scores/s3dis/scannet_pretrained/s3dis_area6_scannet_pretrained.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/scannet_pretrained/area_6/)
### [S3DIS](http://buildingparser.stanford.edu/dataset.html) (from scratch)
| Dataset | AP | AP_50 | AP_25 | Config | Checkpoint :floppy_disk: | Scores :chart_with_upwards_trend: | Visualizations :telescope:
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| Area 1 | 74.1 | 85.1 | 89.6 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area1_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area1_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_1/)
| Area 2 | 44.9 | 57.1 | 67.9 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area2_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area2_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_2/)
| Area 3 | 74.4 | 84.4 | 88.1 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area3_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area3_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_3/)
| Area 4 | 63.8 | 74.7 | 81.1 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area4_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area4_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_4/)
| Area 5 | 56.6 | 68.4 | 75.2 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area5_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area5_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_5/)
| Area 6 | 73.3 | 83.4 | 87.8 | [config](scripts/s3dis/s3dis_from_scratch.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/s3dis/from_scratch/area6_from_scratch.ckpt) | [scores](./docs/detailed_scores/s3dis/from_scratch/s3dis_area6_from_scratch.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/s3dis/from_scratch/area_6/)
### [ScanNet v2](https://kaldir.vc.in.tum.de/scannet_benchmark/semantic_instance_3d?metric=ap)
| Dataset | AP | AP_50 | AP_25 | Config | Checkpoint :floppy_disk: | Scores :chart_with_upwards_trend: | Visualizations :telescope:
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ScanNet val | 55.2 | 73.7 | 83.5 | [config](scripts/scannet/scannet_val.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/scannet/scannet_val.ckpt) | [scores](./docs/detailed_scores/scannet_val.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/scannet/val/)
| ScanNet test | 56.6 | 78.0 | 87.0 | [config](scripts/scannet/scannet_benchmark.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/scannet/scannet_benchmark.ckpt) | [scores](http://kaldir.vc.in.tum.de/scannet_benchmark/result_details?id=1081) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/scannet/test/)
### [ScanNet 200](https://kaldir.vc.in.tum.de/scannet_benchmark/scannet200_semantic_instance_3d)
| Dataset | AP | AP_50 | AP_25 | Config | Checkpoint :floppy_disk: | Scores :chart_with_upwards_trend: | Visualizations :telescope:
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ScanNet200 val | 27.4 | 37.0 | 42.3 | [config](scripts/scannet200/scannet200_val.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/scannet200/scannet200_val.ckpt) | [scores](./docs/detailed_scores/scannet200_val.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/scannet200/val/)
| ScanNet200 test | 27.8 | 38.8 | 44.5 | [config](scripts/scannet200/scannet200_benchmark.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/scannet200/scannet200_benchmark.ckpt) | [scores](https://kaldir.vc.in.tum.de/scannet_benchmark/result_details?id=1242) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/scannet200/test/)
### [STPLS3D](https://www.stpls3d.com/)
| Dataset | AP | AP_50 | AP_25 | Config | Checkpoint :floppy_disk: | Scores :chart_with_upwards_trend: | Visualizations :telescope:
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| STPLS3D val | 57.3 | 74.3 | 81.6 | [config](scripts/stpls3d/stpls3d_val.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/stpls3d/stpls3d_val.ckpt) | [scores](./docs/detailed_scores/stpls3d.txt) | [visualizations](https://omnomnom.vision.rwth-aachen.de/data/mask3d/visualizations/stpls3d/)
| STPLS3D test | 63.4 | 79.2 | 85.6 | [config](scripts/stpls3d/stpls3d_benchmark.sh) | [checkpoint](https://omnomnom.vision.rwth-aachen.de/data/mask3d/checkpoints/stpls3d/stpls3d_benchmark.zip) | [scores](https://codalab.lisn.upsaclay.fr/competitions/4646#results) | visualizations
## BibTeX :pray:
```
@article{Schult23ICRA,
title = {{Mask3D: Mask Transformer for 3D Semantic Instance Segmentation}},
author = {Schult, Jonas and Engelmann, Francis and Hermans, Alexander and Litany, Or and Tang, Siyu and Leibe, Bastian},
booktitle = {{International Conference on Robotics and Automation (ICRA)}},
year = {2023}
}
```