# PhaseNet **Repository Path**: tinyhorse/PhaseNet ## Basic Information - **Project Name**: PhaseNet - **Description**: PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-09 - **Last Updated**: 2021-12-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method [![](https://github.com/wayneweiqiang/PhaseNet/workflows/documentation/badge.svg)](https://wayneweiqiang.github.io/PhaseNet) ## 1. Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) and requirements - Download PhaseNet repository ```bash git clone https://github.com/wayneweiqiang/PhaseNet.git cd PhaseNet ``` - Install to default environment ```bash conda env update -f=env.yml -n base ``` - Install to "phasenet" virtual envirionment ```bash conda env create -f env.yml conda activate phasenet ``` ## 2. Pre-trained model Located in directory: **model/190703-214543** ## 3. Related papers - Zhu, Weiqiang, and Gregory C. Beroza. "PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method." arXiv preprint arXiv:1803.03211 (2018). - Liu, Min, et al. "Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine‐learning phase picker." Geophysical Research Letters 47.4 (2020): e2019GL086189. - Park, Yongsoo, et al. "Machine‐learning‐based analysis of the Guy‐Greenbrier, Arkansas earthquakes: A tale of two sequences." Geophysical Research Letters 47.6 (2020): e2020GL087032. - Chai, Chengping, et al. "Using a deep neural network and transfer learning to bridge scales for seismic phase picking." Geophysical Research Letters 47.16 (2020): e2020GL088651. - Tan, Yen Joe, et al. "Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence." The Seismic Record 1.1 (2021): 11-19. ## 4. Interactive example See details in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_interactive.ipynb): [example_interactive.ipynb](example_interactive.ipynb) ## 5. Batch prediction See details in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_batch_prediction.ipynb): [example_batch_prediction.ipynb](example_batch_prediction.ipynb) ## 6. QuakeFlow example Earthquake detection workflows can be found in the [QuakeFlow](https://wayneweiqiang.github.io/QuakeFlow/) project. ## 7. Training - Download a small sample dataset: ```bash wget https://github.com/wayneweiqiang/PhaseNet/releases/download/test_data/test_data.zip unzip test_data.zip ``` - Start training from the pre-trained model ``` python phasenet/train.py --model_dir=model/190703-214543/ --train_dir=test_data/npz --train_list=test_data/npz.csv --plot_figure --epochs=10 --batch_size=10 ``` - Check results in the **log** folder Please let us know of any bugs found in the code.