# DeepLearningDeployment **Repository Path**: weili_yzzcq/DeepLearningDeployment ## Basic Information - **Project Name**: DeepLearningDeployment - **Description**: Modern C++ and Python to Accelerate and Optimize Artificial Intelligence Models and Deep Neural Networks, and Deploy the Models for Image Processing, Computer Vision and Machine Vision. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-10 - **Last Updated**: 2025-02-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## The Deployment of Artificial Intelligence and Deep Learning Models > Modern C++ and Python Script to Accelerate and Optimize Artificial Intelligence Models and Deep Neural Networks, and Deploy the Models for Image Processing, Computer Vision and Machine Vision, such image Super-Resolution, YOLO serials detection. ![Image](https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/graphics/dl-cycle.png) ![Image](https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/graphics/conversion-opt.png) ### Features - [x]Pytorch model ---> ONNX graph ---> TensorRT Engine ---> Deploy GPU Accelerate - [x]TensorRT - [x]CUDA kernel function - [x]Convert Pytorch and TensorFlow models into Onnx ### Quick Start ```shell git clone DeepLearningDeployment cd DeepLearningDeployment cmake -S . -B build -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE:STRING=Debug cmake -S . -B build -DCMAKE_BUILD_TYPE:STRING=Debug cmake --build build --config Debug cmake -S . -B build -G "Visual Studio 17 2022" -DCMAKE_BUILD_TYPE:STRING=Release cmake -S . -B build -DCMAKE_BUILD_TYPE:STRING=Release cmake --build build --config Release cmake --build build --target clean cmake --install build --prefix ./install # 自动以最大线程数进行并行编译 sudo cmake --build build --target all -j12 ``` ### Organization of Source Code ``` . DeepLearningDeployment |—— MNIST | |—— README.md |—— SISR | |—— README.md |—— TensorRT | |—— CUDA_DriverAPI |—— | |—— CMakeLists.txt | |—— CUDA_RuntimeAPI |—— | |—— CMakeLists.txt | |—— TensorRT_Basic |—— | |—— CMakeLists.txt | |—— README.md |—— external | |—— TensorRT | | |—— bin | | |—— python | | |—— lib | | |—— include | |—— LogModule | | |—— lib | | |—— include | |—— Utility | | |—— lib | | |—— include | |—— README.md |—— Application_Python | | |—— README.md | | |—— requirements.txt |—— Application_Cpp | | |—— README.md | | |—— CMakeLists.txt |—— CMakeLists.txt |—— requirements.txt |—— .clang-format |—— .gitignore |—— README.md ``` ### Context Overview - CUDA Driver and Runtime API - 利用TensorRT加速深度神经网络模型 - Using TensorRT to Accelerate Deep Neural Network Models ### Reference - [Visualize ONNX model via Netron](https://netron.app/) - [Export a PyTorch model to ONNX](https://pytorch.org/tutorials/beginner/onnx/export_simple_model_to_onnx_tutorial.html) - [TensorRT Quick Start Guide](https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html) - [最佳C++ MQTT库](https://developer.aliyun.com/article/1468707) - [TensorRT官方例程SampleOnnxMNIST代码完全解读](https://blog.csdn.net/yanggg1997/article/details/111587687) - [TensorRT详细入门指北](https://cloud.tencent.com/developer/article/2346606) - [ultralytics-YOLO](https://github.com/ultralytics/ultralytics) - [Inno Setup检测软件依赖环境是否安装](https://cloud.tencent.com/developer/article/1849197)