# executorch **Repository Path**: yi_yun/executorch ## Basic Information - **Project Name**: executorch - **Description**: On-device AI across mobile, embedded and edge for PyTorch - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-12 - **Last Updated**: 2025-11-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
ExecuTorch logo mark

ExecuTorch

On-device AI inference powered by PyTorch

PyPI - Version GitHub - Contributors GitHub - Stars Discord - Chat with Us Documentation
**ExecuTorch** is PyTorch's unified solution for deploying AI models on-device—from smartphones to microcontrollers—built for privacy, performance, and portability. It powers Meta's on-device AI across **Instagram, WhatsApp, Quest 3, Ray-Ban Meta Smart Glasses**, and [more](https://docs.pytorch.org/executorch/main/success-stories.html). Deploy **LLMs, vision, speech, and multimodal models** with the same PyTorch APIs you already know—accelerating research to production with seamless model export, optimization, and deployment. No manual C++ rewrites. No format conversions. No vendor lock-in.
📘 Table of Contents - [Why ExecuTorch?](#why-executorch) - [How It Works](#how-it-works) - [Quick Start](#quick-start) - [Installation](#installation) - [Export and Deploy in 3 Steps](#export-and-deploy-in-3-steps) - [Run on Device](#run-on-device) - [LLM Example: Llama](#llm-example-llama) - [Platform & Hardware Support](#platform--hardware-support) - [Production Deployments](#production-deployments) - [Examples & Models](#examples--models) - [Key Features](#key-features) - [Documentation](#documentation) - [Community & Contributing](#community--contributing) - [License](#license)
## Why ExecuTorch? - **🔒 Native PyTorch Export** — Direct export from PyTorch. No .onnx, .tflite, or intermediate format conversions. Preserve model semantics. - **⚡ Production-Proven** — Powers billions of users at [Meta with real-time on-device inference](https://engineering.fb.com/2025/07/28/android/executorch-on-device-ml-meta-family-of-apps/). - **💾 Tiny Runtime** — 50KB base footprint. Runs on microcontrollers to high-end smartphones. - **🚀 [12+ Hardware Backends](https://docs.pytorch.org/executorch/main/backends-overview.html)** — Open-source acceleration for Apple, Qualcomm, ARM, MediaTek, Vulkan, and more. - **🎯 One Export, Multiple Backends** — Switch hardware targets with a single line change. Deploy the same model everywhere. ## How It Works ExecuTorch uses **ahead-of-time (AOT) compilation** to prepare PyTorch models for edge deployment: 1. **🧩 Export** — Capture your PyTorch model graph with `torch.export()` 2. **⚙️ Compile** — Quantize, optimize, and partition to hardware backends → `.pte` 3. **🚀 Execute** — Load `.pte` on-device via lightweight C++ runtime Models use a standardized [Core ATen operator set](https://docs.pytorch.org/executorch/main/compiler-ir-advanced.html#intermediate-representation). [Partitioners](https://docs.pytorch.org/executorch/main/compiler-delegate-and-partitioner.html) delegate subgraphs to specialized hardware (NPU/GPU) with CPU fallback. Learn more: [How ExecuTorch Works](https://docs.pytorch.org/executorch/main/intro-how-it-works.html) • [Architecture Guide](https://docs.pytorch.org/executorch/main/getting-started-architecture.html) ## Quick Start ### Installation ```bash pip install executorch ``` For platform-specific setup (Android, iOS, embedded systems), see the [Quick Start](https://docs.pytorch.org/executorch/main/quick-start-section.html) documentation for additional info. ### Export and Deploy in 3 Steps ```python import torch from executorch.exir import to_edge_transform_and_lower from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner # 1. Export your PyTorch model model = MyModel().eval() example_inputs = (torch.randn(1, 3, 224, 224),) exported_program = torch.export.export(model, example_inputs) # 2. Optimize for target hardware (switch backends with one line) program = to_edge_transform_and_lower( exported_program, partitioner=[XnnpackPartitioner()] # CPU | CoreMLPartitioner() for iOS | QnnPartitioner() for Qualcomm ).to_executorch() # 3. Save for deployment with open("model.pte", "wb") as f: f.write(program.buffer) # Test locally via ExecuTorch runtime's pybind API (optional) from executorch.runtime import Runtime runtime = Runtime.get() method = runtime.load_program("model.pte").load_method("forward") outputs = method.execute([torch.randn(1, 3, 224, 224)]) ``` ### Run on Device **[C++](https://docs.pytorch.org/executorch/main/using-executorch-cpp.html)** ```cpp #include #include Module module("model.pte"); auto tensor = make_tensor_ptr({2, 2}, {1.0f, 2.0f, 3.0f, 4.0f}); auto outputs = module.forward(tensor); ``` **[Swift (iOS)](https://docs.pytorch.org/executorch/main/ios-section.html)** ```swift import ExecuTorch let module = Module(filePath: "model.pte") let input = Tensor([1.0, 2.0, 3.0, 4.0], shape: [2, 2]) let outputs = try module.forward(input) ``` **[Kotlin (Android)](https://docs.pytorch.org/executorch/main/android-section.html)** ```kotlin val module = Module.load("model.pte") val inputTensor = Tensor.fromBlob(floatArrayOf(1.0f, 2.0f, 3.0f, 4.0f), longArrayOf(2, 2)) val outputs = module.forward(EValue.from(inputTensor)) ``` ### LLM Example: Llama Export Llama models using the [`export_llm`](https://docs.pytorch.org/executorch/main/llm/export-llm.html) script or [Optimum-ExecuTorch](https://github.com/huggingface/optimum-executorch): ```bash # Using export_llm python -m executorch.extension.llm.export.export_llm --model llama3_2 --output llama.pte # Using Optimum-ExecuTorch optimum-cli export executorch \ --model meta-llama/Llama-3.2-1B \ --task text-generation \ --recipe xnnpack \ --output_dir llama_model ``` Run on-device with the LLM runner API: **[C++](https://docs.pytorch.org/executorch/main/llm/run-with-c-plus-plus.html)** ```cpp #include auto runner = create_llama_runner("llama.pte", "tiktoken.bin"); executorch::extension::llm::GenerationConfig config{ .seq_len = 128, .temperature = 0.8f}; runner->generate("Hello, how are you?", config); ``` **[Swift (iOS)](https://docs.pytorch.org/executorch/main/llm/run-on-ios.html)** ```swift import ExecuTorchLLM let runner = TextRunner(modelPath: "llama.pte", tokenizerPath: "tiktoken.bin") try runner.generate("Hello, how are you?", Config { $0.sequenceLength = 128 }) { token in print(token, terminator: "") } ``` **Kotlin (Android)** — [API Docs](https://docs.pytorch.org/executorch/main/javadoc/org/pytorch/executorch/extension/llm/package-summary.html) • [Demo App](https://github.com/meta-pytorch/executorch-examples/tree/main/llm/android/LlamaDemo) ```kotlin val llmModule = LlmModule("llama.pte", "tiktoken.bin", 0.8f) llmModule.load() llmModule.generate("Hello, how are you?", 128, object : LlmCallback { override fun onResult(result: String) { print(result) } override fun onStats(stats: String) { } }) ``` For multimodal models (vision, audio), use the [MultiModal runner API](extension/llm/runner) which extends the LLM runner to handle image and audio inputs alongside text. See [Llava](examples/models/llava/README.md) and [Voxtral](examples/models/voxtral/README.md) examples. See [examples/models/llama](examples/models/llama/README.md) for complete workflow including quantization, mobile deployment, and advanced options. **Next Steps:** - 📖 [Step-by-step tutorial](https://docs.pytorch.org/executorch/main/getting-started.html) — Complete walkthrough for your first model - ⚡ [Colab notebook](https://colab.research.google.com/drive/1qpxrXC3YdJQzly3mRg-4ayYiOjC6rue3?usp=sharing) — Try ExecuTorch instantly in your browser - 🤖 [Deploy Llama models](examples/models/llama/README.md) — LLM workflow with quantization and mobile demos ## Platform & Hardware Support | **Platform** | **Supported Backends** | |------------------|----------------------------------------------------------| | Android | XNNPACK, Vulkan, Qualcomm, MediaTek, Samsung Exynos | | iOS | XNNPACK, MPS, CoreML (Neural Engine) | | Linux / Windows | XNNPACK, OpenVINO, CUDA *(experimental)* | | macOS | XNNPACK, MPS, Metal *(experimental)* | | Embedded / MCU | XNNPACK, ARM Ethos-U, NXP, Cadence DSP | See [Backend Documentation](https://docs.pytorch.org/executorch/main/backends-overview.html) for detailed hardware requirements and optimization guides. ## Production Deployments ExecuTorch powers on-device AI at scale across Meta's family of apps, VR/AR devices, and partner deployments. [View success stories →](https://docs.pytorch.org/executorch/main/success-stories.html) ## Examples & Models **LLMs:** [Llama 3.2/3.1/3](examples/models/llama/README.md), [Qwen 3](examples/models/qwen3/README.md), [Phi-4-mini](examples/models/phi_4_mini/README.md), [LiquidAI LFM2](examples/models/lfm2/README.md) **Multimodal:** [Llava](examples/models/llava/README.md) (vision-language), [Voxtral](examples/models/voxtral/README.md) (audio-language), [Gemma](examples/models/gemma3) (vision-language) **Vision/Speech:** [MobileNetV2](https://github.com/meta-pytorch/executorch-examples/tree/main/mv2), [DeepLabV3](https://github.com/meta-pytorch/executorch-examples/tree/main/dl3), [Whisper](https://github.com/meta-pytorch/executorch-examples/tree/main/whisper/android/WhisperApp) **Resources:** [`examples/`](examples/) directory • [executorch-examples](https://github.com/meta-pytorch/executorch-examples) out-of-tree demos • [Optimum-ExecuTorch](https://github.com/huggingface/optimum-executorch) for HuggingFace models ## Key Features ExecuTorch provides advanced capabilities for production deployment: - **Quantization** — Built-in support via [torchao](https://docs.pytorch.org/ao) for 8-bit, 4-bit, and dynamic quantization - **Memory Planning** — Optimize memory usage with ahead-of-time allocation strategies - **Developer Tools** — ETDump profiler, ETRecord inspector, and model debugger - **Selective Build** — Strip unused operators to minimize binary size - **Custom Operators** — Extend with domain-specific kernels - **Dynamic Shapes** — Support variable input sizes with bounded ranges See [Advanced Topics](https://docs.pytorch.org/executorch/main/advanced-topics-section.html) for quantization techniques, custom backends, and compiler passes. ## Documentation - [**Documentation Home**](https://docs.pytorch.org/executorch/main/index.html) — Complete guides and tutorials - [**API Reference**](https://docs.pytorch.org/executorch/main/api-section.html) — Python, C++, Java/Kotlin APIs - [**Backend Integration**](https://docs.pytorch.org/executorch/main/backend-delegates-integration.html) — Build custom hardware backends - [**Troubleshooting**](https://docs.pytorch.org/executorch/main/support-section.html) — Common issues and solutions ## Community & Contributing We welcome contributions from the community! - 💬 [**GitHub Discussions**](https://github.com/pytorch/executorch/discussions) — Ask questions and share ideas - 🎮 [**Discord**](https://discord.gg/Dh43CKSAdc) — Chat with the team and community - 🐛 [**Issues**](https://github.com/pytorch/executorch/issues) — Report bugs or request features - 🤝 [**Contributing Guide**](CONTRIBUTING.md) — Guidelines and codebase structure ## License ExecuTorch is BSD licensed, as found in the [LICENSE](LICENSE) file.

---

Part of the PyTorch ecosystem

GitHubDocumentation