# nncase **Repository Path**: zgg110/nncase ## Basic Information - **Project Name**: nncase - **Description**: Open deep learning compiler stack for Kendryte K210 AI accelerator - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-21 - **Last Updated**: 2021-05-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
nncase
[![License](https://img.shields.io/badge/license-Apache%202-blue)](https://raw.githubusercontent.com/kendryte/nncase/master/LICENSE) [![Build Status](https://dev.azure.com/sunnycase/nncase/_apis/build/status/kendryte.nncase?branchName=master)](https://dev.azure.com/sunnycase/nncase/_build/latest?definitionId=1&branchName=master) `nncase` is a neural network compiler for AI accelerators. `nncase` 是一个为 AI 加速器设计的神经网络编译器。 技术交流 QQ 群:790699378 ## Install from binaries ## 从二进制安装 Download prebuilt binaries from [Release](https://github.com/kendryte/nncase/releases). 下载预编译的二进制文件 [Release](https://github.com/kendryte/nncase/releases)。 ## Build from source ## 从源码编译 [Build from source](./docs/build.md) ## Supported operators ## 支持的算子 - [TFLite ops](./docs/tflite_ops.md) - [Caffe ops](./docs/caffe_ops.md) - [ONNX ops](./docs/onnx_ops.md) ## Usage ## 使用方法 - [Usage(English)](./docs/USAGE_EN.md) - [FAQ(English)](./docs/FAQ_EN.md) - [使用说明(中文)](./docs/USAGE_ZH.md) - [常见问题(中文)](./docs/FAQ_ZH.md) - [Examples 例子](./examples) ## Resources ## 资源 - [K210_Yolo_framework](https://github.com/zhen8838/K210_Yolo_framework) - [Shts! 's Blog (Japanese)](https://www.shtsno24.tokyo/2020/03/nncase-v020.html) --- ## Architecture ## 架构
nncase arch
## Features - Supports multiple inputs and outputs and multi-branch structure - Static memory allocation, no heap memory acquired - Operators fusion and optimizations - Support float and quantized uint8 inference - Support post quantization from float model with calibration dataset - Flat model with zero copy loading ## 功能 - 支持多输入输出网络,支持多分支结构 - 静态内存分配,不需要堆内存 - 算子合并和优化 - 支持 float 和量化 uint8 推理 - 支持训练后量化,使用浮点模型和量化校准集 - 平坦模型,支持零拷贝加载