# CPM_PyTorch **Repository Path**: zhangshirui1/CPM_PyTorch ## Basic Information - **Project Name**: CPM_PyTorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: san - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-01 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Convolutional Pose Machines This is the Pytorch There are 7 files in this folder --handpose_data_cpm.py data loader for Hand Pose dataset --handpose_no_label.py data loader for Hand Pose dataset without ground truth --cpm.py Pytorch cpm model --train.py --test.py --save.py --predict.py --conf.text ## usage #### 1 train model python cpm_train.py You may revise the variable in **conf.text** >train_data_dir = train_label_dir = learning_rate = 8e-6 batch_size = 16 epochs = 50 begin_epoch = 0 Thus change the path to your own datasets and train CPM on your own REMEMBER that you may implement new data loader for you own datasets. After this, you will get models for several epoches. The models are saved in folder **ckpt/** like > ckpt/model_epoch10.pth #### 2 test model python cpm_Test.py After running this, you will get PCK score for each epoch You can select the best trained models #### 3 save prediction results python cpm_save.py After step 2, you will know which is the best epoch, thus you should revise conf.text and change the value of **best_model** #### 4 apply models on datasets without ground truth python cpm_predict.py This step is for applying trained model on datasets without ground truth ##